„Konvolúció” változatai közötti eltérés

Innen: HamWiki
Ugrás a navigációhoz Ugrás a kereséshez
(pelda)
39. sor: 39. sor:
  
 
<gnuplot>
 
<gnuplot>
   set output 'kov_pelda1.png'
+
   set output 'konv_pelda1.png'
 
   set grid
 
   set grid
 
   set size 0.6, 0.4
 
   set size 0.6, 0.4
47. sor: 47. sor:
 
   set key right bottom
 
   set key right bottom
 
   u(n,x) = (x<n ? 0 : (x>=n+1 ? 0 : 1))
 
   u(n,x) = (x<n ? 0 : (x>=n+1 ? 0 : 1))
   g(x) = (-1)*u(3,x)
+
   f(x) = u(2,x)+u(3,x)+u(4,x)+u(5,x)
   plot [0:6] g(x)  w l linewidth 3 title "g",1*(exp(x/0.2)-1) title "f"
+
  h(x) = -u(3,x)-u(4,x)-u(5,x)
 +
   plot [0:6] g(x)  w l linewidth 3 title "g", 2+h(x) w l linewidth 3 title "h"
 
</gnuplot>
 
</gnuplot>
  

A lap 2007. június 14., 19:38-kori változata

A konvolúció a jelfeldolgozás egyik legelemibb művelete. Ez a lineáris művelet két függvényből állít elő egy harmadikat. Legegyszerűbben úgy szemléltethető a konvolúció, mint egy adatsorozat (egyik függvényből vett minta) súlyozott mozgó átlagának számítása egy adott súlyfüggvény (a másik függvényből vett minta) alapján.

Alapvető tulajdonságok

Az [math]f[/math] és [math]g[/math] függvények konvolúcióját [math]f * g[/math]-vel jelöljük. A „csillag” műveleti jel nem tévesztendő össze a szorzást jelölő ponttal. A hasonlóság azért nem véletlen, mert konvolúció alaptulajonságai megegyeznek a szorzáséval:

  • [math]f * g = g * f[/math]
  • [math]f * (g + h) = f * g + f * h[/math]

Matematikai leírása

Tekintettel arra, hogy a konvolúció fogalmával a rádióamatőr gyakorlatban csak diszkrét idejű rendszerekben találkozunk, így a matematikai definícióját is erre korlátozzuk.

Vegyünk egy jelfolyamot, melynek pillanatértékei g(m) pontokból állnak. Továbbá egy áramköri egységet, amely a konvolúciót elvégzi. Ennek az áramköri egységnek a konvolúció elvégzéséhez f(1)...f(n) konstans együtthatók állnak rendelkezésre. Ekkor a konvolúció leírható az alábbiak szerint:

[math](f * g)(m) = \sum_n {f(n) \cdot g(m - n)} \,[/math]

ahol:

g (mint gerjesztés): a beérkező jel mintái, az elemi mintákat g(m) jelöli.
f: belső függvény, f(1) ... f(n)-nel jelölve a „mintáit”, tehát egy n hosszú konstans vektor (--> ezt határozza meg az eszköz funkcióját - lásd később).
f * g: a konvolúció eredménye, (f * g)(m) az eredményül kapott elemi mintákat jelöli

Példák

Nézzünk két egyszerű példát a konvolúció műveletére.

Az bemeneti jelnek (f) vegyünk egy feszültségugrást az n=2 időpillanatban:

n 1 2 3 4 5
f(n) 0 1 1 1 1

Legyenek a g értékei:

m 1 2 3 4 5
g(m) 0 -1 0 0 0


Gnuplot Plot

Alkalmazások

Diszkrét idejű jelfeldolgozás terén

A konvolúció leg elterjedtebb alkalmazása a digitális szűrőkben található. Megfelelő konstans vektor alkalmazásával érjük el a különböző karakterisztikákat. A konstansok kiszámításához az interneten jobbnál-jobb szűrőtervező szoftverek találhatók. Az algoritmus implementálható jelfeldolgozó processzorokban és mikrovezérlőkben is, de nagysebességű jelfeldolgozás vagy egyéb praktikus szempontok esetén gyakran implementálják FPGA-ban is. Gyengébb minőséget megkövetelő esetben akár nagyobb CPLD-ben is.

Processzoros áramkörben (mikrovezérlő, DSP, személyi számítógép) történő implementálásnál nagy előny, ha a processzor gyors szorzóáramkörrel rendelkezik illetve az is előny, ha hardverből támogatja a ciklikus puffereket. Ezáltal sokkal kevesebb órajel „elpazarlásával” végezhető el a művelet, vagy másszóval sokkal több minta feldolgozható ugyanakkora órajellel járó processzort tartalmazó áramkörrel.

A szűrőelrendezéseket csoportosítása
  • bemenetek száma szerint egy vagy több bemenettel rendelkező
  • kimenetek száma szerint egy vagy több kimenettel rendelkező

Alapból az egyetlen bemenettel és egyetlen kimenettel rendelkező szűrőkkel foglalkozunk, ezekből az alappéldákból levezethetőek a több bemenetű illetve több kimenetű elrendezések.

Elemi szűrőimplementációk
  • FIR szűrő (Finite Impulse Response) - véges impulzusválaszú szűrő
  • IIR szűrő (Infinite Impulse Response) - végtelen impulzusválaszú szűrő (Butterworth, Chebishev, Cauer szűrők)
Mi valósítható meg velük?

Egy speciális, úgynevezett átlapolt összeadásos konvolúció az FFT (gyors Fourier transzformáció) eljárás is, amely szintén a legfontosabb jelfeldolgozó algoritmusok egyike. Segítségével apró frekvenciatartományonként vizsgálható az amplitudó és fázis a vizsgált mintában, illetve az elemi amplitudók és fázisok tetszőleges módosítása után a Fourier transzformált jelet visszalakakítva jellé, tetszőleges jelet előállíthatunk a bemenőjelből.

Kétállapotú értékkészlet esetén

Érdemes megemlékezni egy másik igen fontos alkalmazási területről is, ahol a sokbites, finom (analógot reprezentáló) értékkészlet helyett kétállapotú (bináris) formáját használjuk a jelnek. Ilyen bináris alkalmazások a konvolúciós hibajavító eljárások.