Rezgőkör

Innen: HamWiki
A lap korábbi változatát látod, amilyen HA5LQ (vitalap | közreműködések) 2008. január 16., 12:46-kor történt szerkesztése után volt. (Új oldal, tartalma: „==Soros RLC kör== Az ohmos és reaktáns elemekből összeállított áramkörök között kitüntetett szerepe van a kondenzátorból, tekercsből (és ellenállásbó...”)
(eltér) ← Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Ugrás a navigációhoz Ugrás a kereséshez

Soros RLC kör

Az ohmos és reaktáns elemekből összeállított áramkörök között kitüntetett szerepe van a kondenzátorból, tekercsből (és ellenállásból) álló áramkörnek. (Az ellenállást gyakorlati számításokban nem célszerű kihagyni, így vehetjük figyelembe a valóságos tekercs veszteségi ellenállását.) A soros áramkört és a fázisviszonyokat az 1. ábrán láthatjuk (A soros RLC kört később tisztázandó okból soros rezgőkörnek nevezik.)


R1.jpg
1. ábra


Mindhárom sorba kapcsolt elemen ugyanaz az I áram folyik keresztül, a vektorábrán ezt a vízszintesen jobbra mutató I vektor jelzi. Az ellenálláson eső UR feszültség fázisban van az árammal, ezért azzal azonos irányú. A tekercsen indukálódó UL feszültség az áramhoz képest 90 fokkal siet, ezért függőleges, felfelé irányított vektor jelzi. A kondenzátoron eső UC feszültség az átfolyó áramhoz képest 90 fokkal késik, ezért az ennek megfelelő vektor lefelé irányul (bal oldali vektorábra).

A generátor U feszültsége e három feszültség (UR, UL, UC) vektori eredője. Mivel UL és UC ellentétes irányú, e két feszültség eredője a két feszültség különbsége; a példában UL a nagyobb értékű, ezért a különbségi feszültség (UL – UC) vektora felfelé irányul. Ezt a feszültséget kell vektori módon összegezni UR –el (középső vektorábra), az eredő U feszültséggel egyezik meg.

Az impedancia kiszámításához (jobb oldali vektorábra) valamennyi feszültséget elosztottuk I árammal, így olyan derékszögű háromszög adódik, melynek átfogója Z, befogói R és (XL – XC).

Tekintettel arra, hogy XL és XC a frekvencia függvényében változik, Z értéke is a frekvenciától függ (2. ábra). Azon a frekvencián, ahol XL = XC, a két mennyiség különbsége 0, és itt Z = R, azaz az áramkör R-el megegyező ohmos ellenállást tanúsít. Ezt a frekvenciát rezonanciafrekvenciának nevezik és f0- al (az ennek megfelelő körfrekvenciát ωo-al) jelölik.

Mivel XL = ωL, és XC = 1/ωC, és a rezonanciafrekvencián e két mennyiség egyenlő,

ωo2 =1/LC

adódik.


Ez, a rezonanciafrekvencia meghatározására szolgáló képlet az ún. Thomson-képlet.



R2.jpg
2. ábra

A 2. ábrán Z impedanciát (és annak komponenseit) ill. a fázisszöget ábrázoltuk a frekvencia függvényében.

Z komponensei:

-R, melynek ellenállása a frekvencia függvényében nem változik,

-XL = ωL a frekvenciával arányosan nő,

-XC = 1/ωC a frekvencia növekedtével a görbe szerint csökken.

Kis frekvenciákon (f << f0) a három komponens közül XC a domináns, a soros RLC kör mint sorosan kapcsolt ellenállás és kondenzátor viselkedik, ennek megfelelően a fázisszög is a kapacitív reaktancia –90 fokos szögéhez közelít. Rezonanciafrekvencián (f = f0) a kapacitív és induktív reaktancia megegyezik, de ellentétes fázisszögüknél fogva „kiejtik egymást”, és a rezgőkör csak R ellenállást mutatja. A frekvencia növekedtével (f >> f0) egyre inkább az induktív reaktancia válik dominánssá, a soros RLC kör mint ellenállás és sorba kapcsolt tekercs viselkedik, e szerint alakul a +90 fokhoz közelítő fázisszög is (ilyen a viszonyokat mutatnak be az 1. ábra vektordiagramjai is).

Nagy jelentősége van annak a két frekvenciának, amelynél a rezgőkör impedanciájának valós és képzetes része megegyezik (fh1, fh2). Ezeken a frekvenciákon R = (XL – XC) vagy R = (XC – XL), így Z = négyzetgyök R.

Az fh2 - fh1 frekvenciakülönbséget a rezgőkör sávszélességének nevezik, és B –vel jelölik (mértékegysége: Hz):

B = fh2 - fh1

A rezonanciafrekvencia és a sávszélesség hányadosa a rezgőkör jósága, jele: Q (mértékegység nélküli viszonyszám).


Párhuzamos rezgőkör

R ellenállás, C kondenzátor és L tekercs párhuzamos kapcsolásával párhuzamos rezgőkörhöz jutunk (3. ábra).



R3.jpg
3. ábra


A párhuzamos áramköri elemek mindegyikére U szinuszos váltakozó feszültség kapcsolódik (a bal oldali vektorábrán a feszültség vektora vízszintesen, jobbra irányul). Az ellenálláson átfolyó IR áram a feszültséggel fázisban van, vektora ugyanebbe az irányba mutat. A kondenzátoron IC áram a feszültséghez képest 90 fokkal siet, vektora függőlegesen felfelé irányul. A tekercs IL árama 90 fokkal késik, vektora függőlegesen lefelé mutat.

A rezgőkörön kialakuló I áram IR, IL és IC vektori összegeként adódik. IL és IC ellenfázisú, egymásból kivonódnak. Az ábrán IC a nagyobb, ezért eredőjük IC irányú, nagysága IC – IL (középső ábrarész). Ha most mindegyik áramot elosztjuk a közös U feszültséggel, az ellenállás ill. a reaktanciák reciprokát kapjuk (az ábra jobb oldalán). 1/Z egy derékszögű háromszög átfogója, 1/R és (1/XC-1/XL) a befogói.

Ugyanúgy mint a soros rezgőkörnél, azt az f0 frekvenciát, ahol XC = XL rezonanciafrekvenciának nevezik. (Meghatározása a Thomson-képlet segítségével történik). Ezen a frekvencián a kondenzátoron és a tekercsen ellentétes irányú, azonos nagyságú áram folyik, ezek egymást kiegyenlítik, és a rezgőkör R ohmos ellenállást tanúsít. Minden más frekvencián reaktáns áram is folyik, ezért a rezgőkör impedanciája csökken (4. ábra).

Kisebb frekvenciákon a tekercs jelenti a kisebb reaktanciát, így a rezgőkör impedanciája induktív jellegű, míg a rezonanciafrekvencia felett a kapacitív reaktancia a kisebb, ezért az impedancia kapacitív jellegű.


Rk4.jpg
4.ábra


A sávszélesség annak a két frekvenciának (fh2 és fh1) a különbsége, ahol a párhuzamos rezgőkör impedanciája a rezonanciafrekvencián mért érték gyök 2-ed részére csökken:

B = fh2 - fh1


Hogyan „rezeg” a rezgőkör?

Töltsük fel az 5. ábrán látható C kondenzátort U0 feszültségre, majd zárjuk a K kapcsolót.



R5.jpg
5. ábra


Az összekapcsolás pillanatától mindkét elemen ugyanakkora áram folyik, és ugyanakkora a feszültség is.

A t = 0 időpontban a kondenzátor U0 feszültségre van feltöltve, áram nem folyik. A feszültség hatására a tekercsen egyre nagyobb áram indul meg, amely a kondenzátort fokozatosan kisüti. Amikor a kondenzátor teljesen kisült, a feszültség 0, ugyanekkor folyik a legnagyobb áram (a feltöltött kondenzátorban tárolt energia ekkor teljes egészében mágneses energiává alakul). Ennek az energiának a hatására a tekercsen az áram tovább folyik, és – az előzővel ellentétes polaritással – tölteni kezdi a kondenzátort. Amikor a kondenzátor –U0 feszültségre töltődött, az áram ismét 0-ra csökken: a mágneses energia teljes egészében elektrosztatikus energiává alakult vissza. A folyamat ciklikusan ismétlődik, a feszültség és az áram lefolyását az ábra jobb oldalán láthatjuk. (Mindkét elemen az ismert 90 fokos fáziseltérés van a feszültség és az áram között.)

Tehát a „magára hagyott” LC körben szinuszos rezgés alakult ki, az ilyen elrendezést ezért nevezik rezgőkörnek.

Ha a rezgőkör ideális (veszteség nélküli) kondenzátorból és tekercsből áll, a rezgés az idők végeztéig fennmarad. A valóságban a rezgőkör elemei veszteségesek, ezt gyakorlati számításokkor a rezgőkörbe helyezett ellenállással vesszük figyelembe. A veszteségek miatt a rezgés amplitúdója folyamatosan csökken (6. ábra).



R6.jpg
6. ábra


Minél nagyobb a rezgőkör jósága (Q-ja), annál hosszabb idő alatt csillapodnak a rezgőkör rezgései. Csekély jóságú rezgőkörnél egy teljes rezgési periódus sem zajlik le (aperiodikus csillapítás).