Szerkesztővita:Gg630504

Innen: HamWiki
A lap korábbi változatát látod, amilyen Gg630504 (vitalap | közreműködések) 2010. augusztus 3., 22:33-kor történt szerkesztése után volt. (képletek)
Ugrás a navigációhoz Ugrás a kereséshez

Teszt. Nagyon teszt.

Jelpirézezet

Segítség:Számoló

  • dh: huzal átmérője
  • lh, la, lb: huzal hossza; háromszög, négyzet, téglalap oldalának hossza


  • db: tekercs belső átmérője
  • dk: tekercs külső átmérője
  • da: tekercs átlagos átmérője
    • egyrétegű: db + dh
    • többrétegű: (dk+db) / 2
  • dv: tekercs vastagsága = (dk-db) / 2
  • Da: toroid tekercs magjának közepes átmérője
  • l: tekercs hossza


  • N: menetszám
  • L: induktivitás

Egyrétegű mintatekercs

  • da = 30 mm = 1,1811 "
  • l = 50 mm = 1,9685 "
  • N = 57

Többrétegű mintatekercs

  • db = 10 mm = 0,3937 "
  • dk = 90 mm = 3,4533 "
  • da = 50 mm = 1,9685 "
  • dv = 40 mm = 1,5748 "
  • l = 30 mm = 1,1811 "
  • N = 57

Toroid

SI

4 jegyű fv() tábla

[math]L = \frac{ \mu_0 \cdot \mu_r \cdot \frac{\pi}{4} \cdot {d_a}^2 \cdot N^2 }{ \pi \cdot D_a }[/math]

[math]L = \frac{ \mu_0 \cdot \mu_r \cdot {d_a}^2 \cdot N^2 }{4 \cdot D_a } [/math]

Megjegyzés: erővonalhossz = l = π*Da.

<szamolo sor=6 oszlop=38>d_a = 30 milli;D_a = 16 milli;N = 57;mu_r = 1;;L = mu0*mu_r*negyzet(d_a)*negyzet(N)/(4*D_a)</szamolo>

Egyenes huzal - eh1

mm μH

http://www.k7mem.150m.com/Electronic_Notebook/inductors/straight_wire.html

[math] L = 0,0002 \cdot l_h \cdot \left(ln\left(\frac{2 \cdot l_h}{d_h}\right) - 0,75\right)[/math]

  • lh: mm
  • dh: mm
  • L: μH

<szamolo sor=4 oszlop=38 szoveg="Nem SI mértékegységek!">l_h = 50; d_h = 1;;L = 0.0002*l_h*(ln(2*l_h/d_h)-0.75)</szamolo>

SI

[math]L = \frac{1}{2 \cdot \pi} \cdot \mu_0 \cdot l_h \cdot \left(ln\left(\frac{2 \cdot l_h}{d_h}\right) - 0,75\right) [/math]

[math]L = 2 \cdot 10^{-7} \cdot l_h \cdot \left(ln\left(\frac{2 \cdot l_h}{d_h}\right) - 0,75\right)[/math]

<szamolo sor=4 oszlop=38>l_h = 50 milli; d_h = 1 milli;;L = 2e-7*l_h*(ln(2*l_h/d_h)-0.75)</szamolo>

Légmagos egyenlő oldalú háromszög - eoh1

SI

http://emclab.mst.edu/inductance/e-triangl.html

[math] L = \frac{3}{2 \cdot \pi} \cdot \mu_0 \cdot l_a \cdot N^2 \cdot \left(ln\left(\frac{2 \cdot l_a}{d_h}\right)-1,405\right)[/math]

[math] L = 6 \cdot 10^{-7} \cdot l_a \cdot N^2 \cdot \left(ln\left(\frac{2 \cdot l_a}{d_h}\right)-1,405\right)[/math]

<szamolo sor=5 oszlop=38>l_a = 50 milli;d_h = 1 milli;N = 57;;L = 6e-7*l_a*negyzet(N)*(ln(2*l_a/d_h)-1.405)</szamolo>

Légmagos négyzet - n1

SI

http://emclab.mst.edu/inductance/square.html

[math] L = \frac{2}{\pi} \cdot \mu_0 \cdot l_a \cdot N^2 \cdot \left(ln\left(\frac{2 \cdot l_a}{d_h}\right)-0,774\right)[/math]

[math] L = 8 \cdot 10^{-7} \cdot l_a \cdot N^2 \cdot \left(ln\left(\frac{2 \cdot l_a}{d_h}\right)-0,774\right)[/math]

<szamolo sor=5 oszlop=38>l_a = 50 milli;d_h = 0.5 milli;N = 57;;L = 8e-7*l_a*negyzet(N)*(ln(2*l_a/d_h)-0.774)</szamolo>

Légmagos téglalap - t1

SI

http://emclab.mst.edu/inductance/rectgl.html

[math] L = \frac{1}{\pi} \cdot \mu_0 \cdot N^2 \cdot \left( -2 \cdot \left(l_a+l_b\right) +2 \cdot \sqrt{{l_a}^2+{l_b}^2} -l_b \cdot ln\left(\frac{l_b+\sqrt{{l_a}^2+{l_b}^2}}{l_a}\right) -l_a \cdot ln\left(\frac{l_a+\sqrt{{l_a}^2+{l_b}^2}}{l_b}\right) +l_b \cdot ln\left(\frac{4 \cdot l_b}{d_h}\right) +l_a \cdot ln\left(\frac{4 \cdot l_a}{d_h}\right) \right) [/math]

[math] dx = \sqrt{{l_a}^2+{l_b}^2} [/math]

[math] L = 4 \cdot 10^{-7} \cdot N^2 \cdot \left( -2 \cdot \left(l_a+l_b\right) +2 \cdot dx -l_b \cdot ln\left(\frac{l_b+dx}{l_a}\right) -l_a \cdot ln\left(\frac{l_a+dx}{l_b}\right) +l_b \cdot ln\left(\frac{4 \cdot l_b}{d_h}\right) +l_a \cdot ln\left(\frac{4 \cdot l_a}{d_h}\right) \right) [/math]

Megjegyzés: dx = átló hossza.

<szamolo sor=7 oszlop=38>l_a = 50 milli;l_b = 20 milli;d_h = 0.5 milli;N = 57;;dx = gyok(negyzet(l_a)+negyzet(l_b));L = 4e-7*negyzet(N)*( -2*(l_a+l_b) +2*dx -l_b*ln((l_b+dx)/l_a) -l_a*ln((l_a+dx)/l_b) +l_b*ln(4*l_b/d_h) +l_a*ln(4*l_a/d_h) )</szamolo>

Légmagos kör - k1

SI

http://emclab.mst.edu/inductance/circular.html

[math] L = \frac{1}{2} \cdot \mu_0 \cdot d_k \cdot N^2 \cdot \left(ln\left(\frac{8\cdot d_k}{d_h}\right)-2,0\right)[/math]

<szamolo sor=5 oszlop=38>d_k = 50 milli;d_h = 1 milli;N = 57;;L = mu0/2*d_k*negyzet(N)*(ln(8*d_k/d_h)-2)</szamolo>

Egysoros légmagos tekercs - E1

cm cm

Molnár, Jovitza: Rádiósok könyve, 85. oldal ( reprint 1994. ).

[math]L = \frac{d_a \cdot N^2}{0,04 + 0,14 \cdot \frac{l}{d_a}}[/math]

  • da, l: cm
  • L: cm ( == nH )

<szamolo sor=5 oszlop=38 szoveg="Nem SI mértékegységek!">d_a = 3;l = 5;N = 57;;L=d_a*negyzet(N)/(0.04+0.14*l/d_a)</szamolo>

Átalakítva:

[math]L = \frac{{d_a}^2 \cdot N^2}{140 \cdot l + 40 \cdot d_a}[/math]

  • da, l: cm
  • L: μH
SI

[math]L = \frac{\mu_0 \cdot {d_a}^2 \cdot N^2}{1,7593 \cdot l + 0,50266 \cdot d_a}[/math]

[math]L = \frac{{d_a}^2 \cdot N^2}{1,4 \cdot 10^6 \cdot l + 4 \cdot 10^5 \cdot d_a}[/math]

<szamolo sor=5 oszlop=38>d_a = 30 milli;l = 50 milli;N = 57;;L=negyzet(d_a)*negyzet(N)/(1.4e6*l+4e5*d_a)</szamolo>

Egysoros légmagos tekercs - E2

cm μH

Rádióamatőrök kézikönyve 1978. 23. oldal.

[math]L = \frac{d_a^2 \cdot N^2}{100 \cdot l + 45 \cdot d_a}[/math]

  • da, l: cm
  • L: μH

<szamolo sor=5 oszlop=38 szoveg="Nem SI mértékegységek!">d_a = 3;l = 5;N = 57;;L=negyzet(d_a)*negyzet(N)/(100*l+45*d_a)</szamolo>

Megjegyzés: induktivitás a legnagyobb, ha da/l == 2.

SI

[math]L = \frac{\mu_0 \cdot d_a^2 \cdot N^2}{1,2566 \cdot l + 0,56549 \cdot d_a}[/math]

[math]L = \frac{d_a^2 \cdot N^2}{10^6 \cdot l + 4,5 \cdot 10^5 \cdot d_a}[/math]

<szamolo sor=5 oszlop=38>d_a = 30 milli;l = 50 milli;N = 57;;L=negyzet(d_a)*negyzet(N)/(1e6*l+4.5e5*d_a)</szamolo>

Egysoros légmagos tekercs - Nagaoka - E3

cm μH

HE 1993-03-101.

[math]L = k \cdot d_a \cdot N^2[/math]

Ha [math] 0,01 \lt = \frac{d_b}{l} \lt = 1[/math], akkor
[math]k = 8,04 \cdot 10^{-3} \cdot (\frac{d_a}{l})^{0,912}[/math]

Ha [math] 1 \lt \frac{d_a}{l} \lt = 100[/math], akkor
[math]k = 8,19 \cdot 10^{-3} + 6,84 \cdot 10^{-3} \cdot ln(\frac{d_a}{l})[/math]

  • da, l: cm
  • L: μH

<szamolo sor=5 oszlop=38 szoveg="Nem SI mértékegységek!">d_a = 3;l = 5;N = 57;;L = d_a/l<=1 ? 8.04e-3*exp(0.912*ln(d_a/l))*d_a*negyzet(N) : (8.19e-3+6.84e-3*ln(d_a/l))*d_a*negyzet(N)</szamolo>

SI

[math]L = k \cdot d_a \cdot N^2[/math]

Ha [math] 0,01 \lt = \frac{d_b}{l} \lt = 1[/math], akkor
[math]k = 8,04 \cdot 10^{-7} \cdot (\frac{d_a}{l})^{0,912}[/math]

Ha [math] 1 \lt \frac{d_a}{l} \lt = 100[/math], akkor
[math]k = 8,19 \cdot 10^{-7} + 6,84 \cdot 10^{-7} \cdot ln(\frac{d_a}{l})[/math]

<szamolo sor=5 oszlop=38>d_a = 30 milli;l = 50 milli;N = 57;;L = d_a/l<=1 ? 8.04e-7*exp(0.912*ln(d_a/l))*d_a*negyzet(N) : (8.19e-7+6.84e-7*ln(d_a/l))*d_a*negyzet(N)</szamolo>

Egyrétegű légmagos tekercs - E4

inch μH

http://www.deepfriedneon.com/tesla_f_calchelix.html
http://www.daycounter.com/Calculators/Air-Core-Inductor-Calculator.phtml
http://www.k7mem.150m.com/Electronic_Notebook/inductors/coildsgn.html

[math] L = \frac{{r_k}^2 \cdot N^2}{10 \cdot l + 9 \cdot r_k} = \frac{{d_k}^2 \cdot N^2}{40 \cdot l + 18 \cdot d_k}[/math]

  • rk: inch
  • dk: inch
  • L: μH

<szamolo sor=5 oszlop=38 szoveg="Nem SI mértékegységek!">r_k = 0.59055;l = 1.9685;N = 57;;L=negyzet(r_k)*negyzet(N)/(10*l+9*r_k)</szamolo>

SI

[math] L = \frac{\mu_0 \cdot {d_k}^2 \cdot N^2}{1,2767 \cdot l+ 0,57454 \cdot d_k} [/math]

[math] L = \frac{{d_k}^2 \cdot N^2}{1,016 \cdot 10^6 \cdot l+ 4,572 \cdot 10^5 \cdot d_k} [/math]

<szamolo sor=5 oszlop=38>d_k = 30 milli;l = 50 milli;N = 57;;L = negyzet(d_k)*negyzet(N)/(1.016e6*l+4.572e5*d_k)</szamolo>

Lapos ( spirál ) légmagos tekercs - L1

inch μH

http://www.deepfriedneon.com/tesla_f_calcspiral.html

[math] L = \frac{{d_a}^2 \cdot N^2}{30 \cdot d_a - 11 \cdot d_b}[/math]

  • da: inch
  • db: inch
  • L: μH

<szamolo sor=5 oszlop=38 szoveg="Nem SI mértékegységek!">d_a = 1.9685;d_b = 0.3937;N = 57;;L = negyzet(d_a)*negyzet(N)/(30*d_a-11*d_b)</szamolo>

SI

[math] L = \frac{\mu_0 \cdot {d_a}^2 \cdot N^2}{0,95756 \cdot d_a - 0,3511 \cdot d_b} [/math]

[math] L = \frac{\mu_0 \cdot {d_a}^2 \cdot N^2}{7,62 \cdot 10^5 \cdot d_a - 2,794 \cdot 10^5 \cdot d_b} [/math]

<szamolo sor=5 oszlop=38>d_a = 50 milli;d_b = 10 milli;N = 57;;L= negyzet(d_a)*negyzet(N)/(7.62e5*d_a-2.794e5*d_b);</szamolo>

Lapos ( spirál ) légmagos tekercs - L2

inch μH

http://www.pronine.ca/spiralcoil.htm

[math] L = \frac{{d_a}^2 \cdot N^2}{16*d_a + 44 \cdot d_v}[/math]

  • da: inch
  • dv: inch
  • L: μH

<szamolo sor=5 oszlop=38 szoveg="Nem SI mértékegységek!">d_a = 1.9685;d_v = 1.5748;N = 57;;L = negyzet(d_a)*negyzet(N)/(16*d_a+44*d_v)</szamolo>

SI

[math] L = \frac{\mu_0 \cdot {d_a}^2 \cdot N^2}{0,5107 \cdot d_a + 1,4044 \cdot d_v} [/math]

[math] L = \frac{{d_a}^2 \cdot N^2}{4,064 \cdot 10^5 \cdot d_a + 1,1176 \cdot 10^6 \cdot d_v} [/math]

<szamolo sor=5 oszlop=38>d_a = 50 milli;d_v = 40 milli;N = 57;;L= negyzet(d_a)*negyzet(N)/(4.064e5*d_a+1.1176e6*d_v)</szamolo>

Többrétegű légmagos méhsejt tekercs - T1 - Rossz

cm μH

HE 1993-03-101.

Olyan, mint a T2 féle, de:

  • határozottan a tekercs külső átmérőjét említi, a számláló érdekes;
  • a nevezőben [math]0,38 \cdot (d_k+d_v)[/math]-nál dh helyett dv van.

[math]L = \frac{(d_k+d_v)^2 \cdot N^2}{0,38 \cdot (d_k+d_v) + 1,5 \cdot l + 1,25 \cdot d_v} \cdot 10[/math]

  • dk, dv, l: cm
  • L: μH

<szamolo sor=6 oszlop=38 szoveg="Nem SI mértékegységek!">d_k = 9;d_v = 4;l = 3;N = 57;;L = negyzet(d_k+d_v)*negyzet(N)/(0.38*(d_k+d_v)+1.5*l+1.25*d_v)*10;</szamolo>

SI

[math]L = \frac{(d_k+d_v)^2 \cdot N^2}{380 \cdot (d_k+d_v) + 1500 \cdot l + 1250 \cdot d_v}[/math]

<szamolo sor=6 oszlop=38>d_k = 90 milli;d_v = 40 milli;l = 30 milli;N = 57;;L = negyzet(d_k+d_v)*negyzet(N)/(380*(d_k+d_v)+1500*l+1250*d_v);</szamolo>

Többrétegű légmagos kereszttekercselésű tekercs - T2

cm μH

Gergely Lajos, Czellár Sándor: Elektronikai alkatrészek és műszerek, 52. o. 3-4. képlet.

'D - a tekercs átmérője', de, hogy belső, külső vagy átlagos, az homályban maradt. Db-nek vettem fel, mert a számlálóban így [math]d_b+d_v = d_a[/math] lesz.

[math]L = \frac{(d_b+d_v)^2 \cdot N^2}{0,38 \cdot (d_b+d_h) + 1,5 \cdot l + 1,25 \cdot d_v} \cdot 0,01[/math]

  • db, dv, dh, l: cm
  • L: μH

<szamolo sor=7 oszlop=38 szoveg="Nem SI mértékegységek!">d_b = 1;d_v = 4;l = 3;d_h = 0.05;N = 57;;L = negyzet(d_b+d_v)*negyzet(N)/(0.38*(d_b+d_h)+1.5*l+1.25*d_v)*0.01</szamolo>

SI

[math]L = \frac{\mu_0 \cdot (d_b+d_v)^2 \cdot N^2}{0,47752 \cdot (d_b+d_h) + 1,885 \cdot l + 1,5708 \cdot d_v}[/math]

[math]L = \frac{(d_b+d_v)^2 \cdot N^2}{3,8 \cdot 10^5 \cdot (d_b+d_h) + 1,5 \cdot 10^6 \cdot l + 1,25 \cdot 10^6 \cdot d_v}[/math]

<szamolo sor=7 oszlop=38>d_b = 10 milli;d_v = 40 milli;l = 30 milli;d_h = 0.5 milli;N = 57;;L = negyzet(d_b+d_v)*negyzet(N)/(3.8e5*(d_b+d_h)+1.5e6*l+1.25e6*d_v)</szamolo>

Többsoros légmagos tekercs - Wheeler - T3

mm nH

rt 1999-10-491.

[math] L = \frac{7,87 \cdot {d_a}^2 \cdot N^2}{3 \cdot d_a + 9 \cdot l + 10 \cdot d_v } [/math]

  • da, dv, l: mm
  • L: nH

<szamolo sor=6 oszlop=38 szoveg="Nem SI mértékegységek!">d_a = 50;d_v = 40;l = 30;N = 57;;L = 7.87*negyzet(d_a)*negyzet(N)/(3*d_a+9*l+10*d_v)</szamolo>

Legpontosabb és legjobb önindukciós tényező/huzalellenállás, ha [math] 3 \cdot d_a == 9 \cdot l == 10 \cdot d_v[/math]

SI

[math] L = \frac{\mu_0 \cdot {d_a}^2 \cdot N^2}{0,47902 \cdot d_a + 1,4371 \cdot l + 1,5967 \cdot d_v } [/math]

[math] L = \frac{{d_a}^2 \cdot N^2}{381194 \cdot d_a + 1143586 \cdot l + 1270648 \cdot d_v } [/math]

<szamolo sor=7 oszlop=38>d_a = 50 milli;d_v = 40 milli;l = 30 milli;N = 57;;L = mu0*negyzet(d_a)*negyzet(N)/(0.47902*d_a+1.4371*l+1.5967*d_v);L = negyzet(d_a)*negyzet(N)/(381194*d_a+1143583*l+1270648*d_v)</szamolo>

Többsoros légmagos tekercs - T4

inch μH

http://www.captain.at/electronics/coils/

[math] L = \frac{0,2 \cdot {d_k}^2 \cdot N^2}{ 3 \cdot d_k + 9 \cdot l + 10 \cdot( d_k-d_b)} [/math]

  • db, dk, l: inch
  • L: μH

<szamolo sor=6 oszlop=38 szoveg="Nem SI mértékegységek!">d_b = 0.3937;d_k = 3.543;l = 1.1811;N = 57;;L = 0.2*negyzet(d_k)*negyzet(N)/(3*d_k+9*l+10*(d_k-d_b))</szamolo>

SI

[math] L = \frac{\mu_0 \cdot {d_k}^2 \cdot N^2}{0,47878 \cdot d_k + 1,4363 \cdot l + 1,5959 \cdot( d_k-d_b)}[/math]

[math] L = \frac{{d_k}^2 \cdot N^2}{3,81 \cdot 10^5 \cdot d_k + 1,143 \cdot 10^6 \cdot l + 1,5959 \cdot 10^6\cdot( d_k-d_b)}[/math]

<szamolo sor=7 oszlop=38>d_b = 10 milli;d_k = 90 milli;l = 30 milli;N=57;;L = mu0*negyzet(d_k)*negyzet(N)/(0.47878*d_k+1.4363*l+1.5959*(d_k-d_b));L = negyzet(d_k)*negyzet(N)/(3.81e5*d_k+1.143e6*l+1.27e6*(d_k-d_b)); </szamolo>

Kosárfonott légmagos tekercs - K1

HG7AW: Egysoros légmagos tekercs képlete, de körülbelül 5%-al nagyobb menetszám ugyanahhoz az induktivitáshoz.

Új

mm nμH

[math] L = [/math]

  • L: nμH

<szamolo sor=6 oszlop=38 szoveg="Nem SI mértékegységek!">;</szamolo>

SI

[math] L = [/math]

<szamolo sor=6 oszlop=38>;</szamolo>

Még mindig teszt. Képletek.

[math] A = \frac{\pi}{4}\cdot d^2\, [/math] ; [math] d = 127 \cdot 10^{-6} \cdot 92^\frac{36-AWG}{39}\, [/math] ; [math] r = \frac{d}{2}\, [/math]

[math] AWG = -39 \cdot log_{92}^\frac{d}{127 \cdot 10^{-6}} + 36\,[/math]