„Rádióvevő logikai felépítése” változatai közötti eltérés
a (kategória) |
(bővítés, új kategória) |
||
1. sor: | 1. sor: | ||
− | + | = Egyenes vevők = | |
− | Az egyenes vevők a vételi frekvenciára hangolják az összes szűrőkörüket, és ezen a | + | Az egyenes vevő előnye az igen egyszerű felépítése. Az elektroncsöves korszakban általában 1 ... 5 csövet tartalmaztak. Az egyenes vevők a vételi frekvenciára hangolják az összes szűrőkörüket, és az alább ismertetett szinkrodin vevő kivételével ezen a frekvencián demodulálnak. |
+ | |||
+ | == Klasszikus egyenes vevő == | ||
[[Kép:egyenes vevo.png]] | [[Kép:egyenes vevo.png]] | ||
− | Hangolható (több állomást fogni képes) vevőkészüléknél minden szűrőkört | + | '''Hátrányai:''' |
− | egyformán kell hangolni. Ez a követelmény (''együttfutás'') sok kör esetén | + | |
− | csak nehezen biztosítható, ezáltal az egyenes vevők [[szelektivitás]]a | + | * Szűrőkörök a vételi frekvencián üzemelnek. Belátható, minél magasabb a vételi frekvencia, annál rosszabb a szelektivitása. URH-ra például alkalmatlan. |
− | + | * Hangolható (több állomást fogni képes) vevőkészüléknél minden szűrőkört egyformán kell hangolni. Ez a követelmény (''együttfutás'') sok kör esetén | |
− | + | csak nehezen biztosítható, ezáltal az egyenes vevők [[szelektivitás]]a gyenge. | |
− | + | * Amikor a rezgőköröket hangoljuk, akkor általában csak a kondenzátor értékét változtatjuk. Ez azzal jár, hogy a hangolás során megváltozik az L/C viszony, és így a [[jósági tényező]]. Ezért a vevő sávszélessége más a skála elején és végén. | |
+ | * AM jel demodulálása alkalmas. Kis kiegészítéssel CW és PSK31 jel vevőjének analóg része is megvalósítható. Sajnos SSB-re nem praktikus, ugyanis SSB jel esetén a másik oldalsáv egy másik adást rejthet, amely ráadásul gyakran erősebb lehet, mint a venni kívánt adás. | ||
+ | |||
+ | Összességében elmondható, hogy az egyenes vevő mára a barkácsolók játékszere lett. Azonban az alább ismertetett altípusok miatt jó játékszer lehet. | ||
+ | |||
+ | == Regeneratív vevő == | ||
+ | |||
+ | Egy rezgőkör sávszélessége annál kisebb, minél nagyobb a [[jósági tényező]]je. Ezt elektronikus úton is lehet kompenzálni, ha a rezgőkör csillapítását egy oly mértékű erősítéssel szabályozzuk vissza, hogy az eredő hurokerősítés alulról közelítse az 1-et (el nem érheti, hiszen ebben az esetben oszcillálna). | ||
+ | |||
+ | [[Fájl:Radiovevo regenerativ.gif]] | ||
− | + | Az ábrán látható első cső erősíti a rezgőkör jelét, majd az erősített jel áramával egy segédtekercsen energiát juttat vissza a rezgőköri tekercsbe. A regeneratív vevő akkor jó, ha pont egy hajszállal kisebb a hurokerősítés annál, ahol magától, bármiféle gerjesztés nélkül oszcillálna. | |
− | Az egyenes | + | Megjegyzés: a fenti áramkör [[elektroncső]] helyett [[tranzisztor]]ral, [[jFET]]-tel, [[MOSFET]]-tel egyaránt megépíthető. |
+ | |||
+ | Egy jótanács: regeneratív vevővel óvatosan, előtte célszerű egy szelektív előerősítő fokozatot beiktatni, ugyanis ez a rezgőkör mint gerjesztett kör elektromágneses szennyezést juttathat vissza az „éterbe”. Ez pedig egy vevőnél nem cél. | ||
+ | |||
+ | == DC-re keverő, szinkrodin vevő == | ||
+ | |||
+ | Az egyenes vevő egy érdekes változata a ''közvetlen keverésű'' készülékek (szinkrodin, angolul DC = Direct Conversion). Az ilyen vevő a bejövő nagyfrekvenciát közvetlenül hangfrekvenciára keveri át. A sávszélességet itt a hangfrekvenciás fokozat sávszélessége határozza meg. Az ezekben detektált jel szintje kicsi. Régebben, a csöves hangfrekvenciás erősítőkben keletkező zajok miatt nem lehetett jó minőségű vevőt készíteni ilyen elrendezéssel. A mai félvezetők alacsony zaja miatt ez a fajta vevő ismét előtérbe került. Mivel a nagyfrekvenciás jelet nem erősítik, könnyen elkerülhető bennük a keresztmodulációs torzítás. | ||
+ | |||
+ | = Szuperheterodin elv = | ||
+ | |||
+ | Az egyenes vevők hiányosságának áthidalására találták ki a szuperheterodin elvet. Úgy kerülték ki a sok hangolandó rezgőkör problémáját, hogy bevezettek egy úgynevezett középfrekvenciát (KF, angolul IF = intermediate frequency). | ||
== Szuperheterodin vevőáramkörök == | == Szuperheterodin vevőáramkörök == | ||
− | |||
− | |||
[[Kép:szuperheterodin.png]] | [[Kép:szuperheterodin.png]] | ||
30. sor: | 49. sor: | ||
A szuperheterodin vevők kétségtelen előnye az olcsóság, így műsorszóró sávok vevőkészülékeiben előszeretettel alkalmazzák. Inkább a műsorszóró sávok vannak úgy kialakítva, hogy melléjük, a tükörfrekvencia várható helyére csendesebb sávrészt tettek, azaz hatóságilag nem osztják ki nagy teljesítménnyel sugárzó alkalmazások részére. | A szuperheterodin vevők kétségtelen előnye az olcsóság, így műsorszóró sávok vevőkészülékeiben előszeretettel alkalmazzák. Inkább a műsorszóró sávok vannak úgy kialakítva, hogy melléjük, a tükörfrekvencia várható helyére csendesebb sávrészt tettek, azaz hatóságilag nem osztják ki nagy teljesítménnyel sugárzó alkalmazások részére. | ||
+ | |||
+ | Az elektroncsöves korszakban egy 4 csöves szuperheterodin készülék az alábbiak szerint épült fel: | ||
+ | |||
+ | * 1. cső: Önrezgő [[keverő]] | ||
+ | * 2. cső: [[erősítő]] - meghajtásánál és a kimenetén is egy-egy trafó, amely primer és szekunder körei egyaránt hangoltak | ||
+ | * 3. cső: AM demodulátor - [[Audion]] elrendezéssel | ||
+ | * 4. cső: Hang végerősítő | ||
== Dupla szuper (kétszer kevert szuperheterodin) vevőáramkörök == | == Dupla szuper (kétszer kevert szuperheterodin) vevőáramkörök == | ||
41. sor: | 67. sor: | ||
'''Megjegyzés:''' Az előerősítőt csak URH sávú vevők esetén építik az első keverő elé, rövidhullámú készülékeknél feltétlenül sávszűrővel kell kezdeni a sok nagyjelű állomás okozta problémák miatt. A problémák a keverő nem 100%-os linearitásávól adódnak. Lásd bőveben [[keverők]] szócikkben. | '''Megjegyzés:''' Az előerősítőt csak URH sávú vevők esetén építik az első keverő elé, rövidhullámú készülékeknél feltétlenül sávszűrővel kell kezdeni a sok nagyjelű állomás okozta problémák miatt. A problémák a keverő nem 100%-os linearitásávól adódnak. Lásd bőveben [[keverők]] szócikkben. | ||
− | == | + | = I/Q keverős vevőkészülékek = |
+ | |||
+ | == Dupla szuper - majd A/D és digitális I/Q == | ||
A digitális vevőkészülékek leggyakrabban a ''dupla szuperre'' hasonlítanak, gyakran még egy harmadik, 455 kHz-ről 12 kHz-re történő lekeverő áramkört alkalmaznak, ezáltal 3-szor transzponált vevőnek hívjuk. Bár előfordul, hogy közvetlenül a 455 kHz-es KF-en történik a digitalizálás. | A digitális vevőkészülékek leggyakrabban a ''dupla szuperre'' hasonlítanak, gyakran még egy harmadik, 455 kHz-ről 12 kHz-re történő lekeverő áramkört alkalmaznak, ezáltal 3-szor transzponált vevőnek hívjuk. Bár előfordul, hogy közvetlenül a 455 kHz-es KF-en történik a digitalizálás. | ||
+ | |||
+ | == Közvetlen I/Q keverés == | ||
A másik elv szerint közvetlen a venni kívánt frekvencia környékére állítjuk be a keverő oszcillátorát és szintén kettő keverővel keverünk, de nem egymás után, hanem egymással párhuzamosan. Ekkor mindkét keverőre rákötjük a bejövő jelet, az egyik keverőre rávezetjük a keverő oszcillátor jelét, a másik keverőre pedig az oszcillátor jelének 90 fokos fázistoltját. | A másik elv szerint közvetlen a venni kívánt frekvencia környékére állítjuk be a keverő oszcillátorát és szintén kettő keverővel keverünk, de nem egymás után, hanem egymással párhuzamosan. Ekkor mindkét keverőre rákötjük a bejövő jelet, az egyik keverőre rávezetjük a keverő oszcillátor jelét, a másik keverőre pedig az oszcillátor jelének 90 fokos fázistoltját. | ||
51. sor: | 81. sor: | ||
Ennek eredményeképpen a közeli tükörfrekvencia is benne van a lekevert jelben, de mivel a 90 fokos fázistolt jel is rendelkezésünkre áll, ezért a digitális jelfeldolgozó egységben meg tudjuk különböztetni az f<sub>bejövő</sub>-f<sub>oszcillátor</sub> jelet az f<sub>oszcillátor</sub>-f<sub>bejövő</sub> jeltől. A megértéséhez szemléltetésképpen képzeljük el úgy a jelet, mintha egy kerék forgása lenne, amelyet ha egyetlen keverős I jelre (vízszintes síkra) támaszkodva csak a lengésének üteméről tudunk mondani valamit, de a függőleges síkot is megismerve (Q jel) már egy forgó kereket tudunk ábrázolni, amelynek így ismerjük a forgásirányát is. (lásd: középiskola fizika - hullám, mint forgó test 1 dimenziós vetülete) | Ennek eredményeképpen a közeli tükörfrekvencia is benne van a lekevert jelben, de mivel a 90 fokos fázistolt jel is rendelkezésünkre áll, ezért a digitális jelfeldolgozó egységben meg tudjuk különböztetni az f<sub>bejövő</sub>-f<sub>oszcillátor</sub> jelet az f<sub>oszcillátor</sub>-f<sub>bejövő</sub> jeltől. A megértéséhez szemléltetésképpen képzeljük el úgy a jelet, mintha egy kerék forgása lenne, amelyet ha egyetlen keverős I jelre (vízszintes síkra) támaszkodva csak a lengésének üteméről tudunk mondani valamit, de a függőleges síkot is megismerve (Q jel) már egy forgó kereket tudunk ábrázolni, amelynek így ismerjük a forgásirányát is. (lásd: középiskola fizika - hullám, mint forgó test 1 dimenziós vetülete) | ||
+ | == Közvetlen digitalizálás - majd digitális I/Q == | ||
+ | |||
+ | Ebben az esetben a fenti I/Q jelet tartalmazó blokkdiagramon a bekapcsolható előerősítő után helyezünk el egy nagysebességű mintavevő-tartó (S/H) áramkörrel ellátott A/D átalakítót, és a továbbiakban látható VFO, keverő és a többi áramköri egység már a digitális áramkörben kerül kialakításra. | ||
+ | |||
+ | Ez részben úgy tűnik, visszatérés az egyenes vevő elvére. Sajnos a jelenleg gyártott A/D átalakítókkal és félvezetőkkel kijelenthető, hogy csak rosszabb paraméterű vevőkészükék gyártható ily módon. Tehát egy alacsonyfrekvenciás KF vagy I/Q jelekkel megvalósított KF fokozat alkalmazása célszerű. | ||
+ | |||
+ | Megjegyzés: sebesség terén nagy megtakarítás érhető azzal, hogy nem kell a legmagasabb frekvenciakomponens kétszeresével mintavételezni. Ha az analóg sávszűrőről tudjuk, hogy hány Hertz széles tartomány után erőteljes már az elnyomása, akkor ennek a frekvenciának a duplája is elégséges mintavételi gyakoriságnak. Azaz alulmintavételezhetünk. Azonban magának a mintavételező és mintát tartó áramkör sebességének mindenképp a tényleges bejövő jel sebességéhez kell igazodnia. | ||
− | [[Kategória: | + | [[Kategória: Rádió részegységei]] |
A lap 2009. október 12., 23:59-kori változata
Tartalomjegyzék
Egyenes vevők
Az egyenes vevő előnye az igen egyszerű felépítése. Az elektroncsöves korszakban általában 1 ... 5 csövet tartalmaztak. Az egyenes vevők a vételi frekvenciára hangolják az összes szűrőkörüket, és az alább ismertetett szinkrodin vevő kivételével ezen a frekvencián demodulálnak.
Klasszikus egyenes vevő
Hátrányai:
- Szűrőkörök a vételi frekvencián üzemelnek. Belátható, minél magasabb a vételi frekvencia, annál rosszabb a szelektivitása. URH-ra például alkalmatlan.
- Hangolható (több állomást fogni képes) vevőkészüléknél minden szűrőkört egyformán kell hangolni. Ez a követelmény (együttfutás) sok kör esetén
csak nehezen biztosítható, ezáltal az egyenes vevők szelektivitása gyenge.
- Amikor a rezgőköröket hangoljuk, akkor általában csak a kondenzátor értékét változtatjuk. Ez azzal jár, hogy a hangolás során megváltozik az L/C viszony, és így a jósági tényező. Ezért a vevő sávszélessége más a skála elején és végén.
- AM jel demodulálása alkalmas. Kis kiegészítéssel CW és PSK31 jel vevőjének analóg része is megvalósítható. Sajnos SSB-re nem praktikus, ugyanis SSB jel esetén a másik oldalsáv egy másik adást rejthet, amely ráadásul gyakran erősebb lehet, mint a venni kívánt adás.
Összességében elmondható, hogy az egyenes vevő mára a barkácsolók játékszere lett. Azonban az alább ismertetett altípusok miatt jó játékszer lehet.
Regeneratív vevő
Egy rezgőkör sávszélessége annál kisebb, minél nagyobb a jósági tényezője. Ezt elektronikus úton is lehet kompenzálni, ha a rezgőkör csillapítását egy oly mértékű erősítéssel szabályozzuk vissza, hogy az eredő hurokerősítés alulról közelítse az 1-et (el nem érheti, hiszen ebben az esetben oszcillálna).
Az ábrán látható első cső erősíti a rezgőkör jelét, majd az erősített jel áramával egy segédtekercsen energiát juttat vissza a rezgőköri tekercsbe. A regeneratív vevő akkor jó, ha pont egy hajszállal kisebb a hurokerősítés annál, ahol magától, bármiféle gerjesztés nélkül oszcillálna.
Megjegyzés: a fenti áramkör elektroncső helyett tranzisztorral, jFET-tel, MOSFET-tel egyaránt megépíthető.
Egy jótanács: regeneratív vevővel óvatosan, előtte célszerű egy szelektív előerősítő fokozatot beiktatni, ugyanis ez a rezgőkör mint gerjesztett kör elektromágneses szennyezést juttathat vissza az „éterbe”. Ez pedig egy vevőnél nem cél.
DC-re keverő, szinkrodin vevő
Az egyenes vevő egy érdekes változata a közvetlen keverésű készülékek (szinkrodin, angolul DC = Direct Conversion). Az ilyen vevő a bejövő nagyfrekvenciát közvetlenül hangfrekvenciára keveri át. A sávszélességet itt a hangfrekvenciás fokozat sávszélessége határozza meg. Az ezekben detektált jel szintje kicsi. Régebben, a csöves hangfrekvenciás erősítőkben keletkező zajok miatt nem lehetett jó minőségű vevőt készíteni ilyen elrendezéssel. A mai félvezetők alacsony zaja miatt ez a fajta vevő ismét előtérbe került. Mivel a nagyfrekvenciás jelet nem erősítik, könnyen elkerülhető bennük a keresztmodulációs torzítás.
Szuperheterodin elv
Az egyenes vevők hiányosságának áthidalására találták ki a szuperheterodin elvet. Úgy kerülték ki a sok hangolandó rezgőkör problémáját, hogy bevezettek egy úgynevezett középfrekvenciát (KF, angolul IF = intermediate frequency).
Szuperheterodin vevőáramkörök
Az összes szűrőkört és jelerősítőt erre a rögzített középfrekvenciára hangolják. A bejövő jel frekvenciáját pedig a lehető leghamarabb erre a frekvenciára keverik le.
Hogy ne csak szép legyen az élet: a keverők fejezetben részletesen olvashatunk a jel keverésének hátteréről. Itt röviden annyit megemlítünk, hogy keveréskor a két jel frekvenciájának összege és különbsége egyaránt megjelenik. Ez azt jelenti a gyakorlatban, hogy ha például a középfrekvencia 455 kHz és a 7040 kHz-es frekvenciát szeretnénk venni, akkor azt a frekvenciát kell lekeverni 455 kHz-re. Ehhez vagy 7040 kHz + 455 kHz = 7495 kHz-et vagy 7040 kHz - 455 kHz = 6585 kHz-es keverőjelet kell alkalmaznom. Tegyük fel, hogy a 7495 kHz mellett döntünk. Belátható, hogy a 7950 kHz-es frekvencián található nemkívánatos adót is venni fogja a készülékem a 7040 kHz-es jellel egyidejűleg, ugyanis a 7950 kHz - 7495 kHz szintén 455 kHz.
Tehát a vevőkeverőnknek önmagában sajnos rossz a tükörszelektivitása, azaz a tükörfrekvencia elnyomása. Ennek javítását szolgálja a bemeneti sávszűrő. A tükörszelektivitás annál rosszab minél kisebb a középfrekvencia.
A szuperheterodin vevők kétségtelen előnye az olcsóság, így műsorszóró sávok vevőkészülékeiben előszeretettel alkalmazzák. Inkább a műsorszóró sávok vannak úgy kialakítva, hogy melléjük, a tükörfrekvencia várható helyére csendesebb sávrészt tettek, azaz hatóságilag nem osztják ki nagy teljesítménnyel sugárzó alkalmazások részére.
Az elektroncsöves korszakban egy 4 csöves szuperheterodin készülék az alábbiak szerint épült fel:
- 1. cső: Önrezgő keverő
- 2. cső: erősítő - meghajtásánál és a kimenetén is egy-egy trafó, amely primer és szekunder körei egyaránt hangoltak
- 3. cső: AM demodulátor - Audion elrendezéssel
- 4. cső: Hang végerősítő
Dupla szuper (kétszer kevert szuperheterodin) vevőáramkörök
A fent ismertetett tükörszelektivitási problémák kiküszöbölésére rádióamatőr vevőkészülékekben leggyakrabban kétszer transzponált (duplán kevert) vevőkonstrukciót használnak.
A tükörfrekvencia-elnyomást ez a konstrukció úgy valósítja meg, hogy először egy összegző keveréssel felkeveri a kívánt sávot egy magasfrekvenciás KF-re, ott sáváteresztő szűrővel elnyomjuk a nem kívánt tükörfrekvencián levő jelet, majd ezután keverjük le az alacsony KF-re, ahol már nagymeredekségű szűrőt tudunk készíteni az egymás melletti adások szétválasztásához.
Megjegyzés: Az előerősítőt csak URH sávú vevők esetén építik az első keverő elé, rövidhullámú készülékeknél feltétlenül sávszűrővel kell kezdeni a sok nagyjelű állomás okozta problémák miatt. A problémák a keverő nem 100%-os linearitásávól adódnak. Lásd bőveben keverők szócikkben.
I/Q keverős vevőkészülékek
Dupla szuper - majd A/D és digitális I/Q
A digitális vevőkészülékek leggyakrabban a dupla szuperre hasonlítanak, gyakran még egy harmadik, 455 kHz-ről 12 kHz-re történő lekeverő áramkört alkalmaznak, ezáltal 3-szor transzponált vevőnek hívjuk. Bár előfordul, hogy közvetlenül a 455 kHz-es KF-en történik a digitalizálás.
Közvetlen I/Q keverés
A másik elv szerint közvetlen a venni kívánt frekvencia környékére állítjuk be a keverő oszcillátorát és szintén kettő keverővel keverünk, de nem egymás után, hanem egymással párhuzamosan. Ekkor mindkét keverőre rákötjük a bejövő jelet, az egyik keverőre rávezetjük a keverő oszcillátor jelét, a másik keverőre pedig az oszcillátor jelének 90 fokos fázistoltját.
Ennek eredményeképpen a közeli tükörfrekvencia is benne van a lekevert jelben, de mivel a 90 fokos fázistolt jel is rendelkezésünkre áll, ezért a digitális jelfeldolgozó egységben meg tudjuk különböztetni az fbejövő-foszcillátor jelet az foszcillátor-fbejövő jeltől. A megértéséhez szemléltetésképpen képzeljük el úgy a jelet, mintha egy kerék forgása lenne, amelyet ha egyetlen keverős I jelre (vízszintes síkra) támaszkodva csak a lengésének üteméről tudunk mondani valamit, de a függőleges síkot is megismerve (Q jel) már egy forgó kereket tudunk ábrázolni, amelynek így ismerjük a forgásirányát is. (lásd: középiskola fizika - hullám, mint forgó test 1 dimenziós vetülete)
Közvetlen digitalizálás - majd digitális I/Q
Ebben az esetben a fenti I/Q jelet tartalmazó blokkdiagramon a bekapcsolható előerősítő után helyezünk el egy nagysebességű mintavevő-tartó (S/H) áramkörrel ellátott A/D átalakítót, és a továbbiakban látható VFO, keverő és a többi áramköri egység már a digitális áramkörben kerül kialakításra.
Ez részben úgy tűnik, visszatérés az egyenes vevő elvére. Sajnos a jelenleg gyártott A/D átalakítókkal és félvezetőkkel kijelenthető, hogy csak rosszabb paraméterű vevőkészükék gyártható ily módon. Tehát egy alacsonyfrekvenciás KF vagy I/Q jelekkel megvalósított KF fokozat alkalmazása célszerű.
Megjegyzés: sebesség terén nagy megtakarítás érhető azzal, hogy nem kell a legmagasabb frekvenciakomponens kétszeresével mintavételezni. Ha az analóg sávszűrőről tudjuk, hogy hány Hertz széles tartomány után erőteljes már az elnyomása, akkor ennek a frekvenciának a duplája is elégséges mintavételi gyakoriságnak. Azaz alulmintavételezhetünk. Azonban magának a mintavételező és mintát tartó áramkör sebességének mindenképp a tényleges bejövő jel sebességéhez kell igazodnia.