Soros és párhuzamos kapcsolás

Innen: HamWiki
A lap korábbi változatát látod, amilyen Gg630504 (vitalap | közreműködések) 2011. február 27., 00:39-kor történt szerkesztése után volt. (→‎Diódák, tranzisztorok)
(eltér) ← Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Ugrás a navigációhoz Ugrás a kereséshez
Soros kapcsolás

Minden alkatrészen azonos áramerősség folyik át.

Párhuzamos kapcsolás

Minden alkatrészen azonos feszültség esik.

Mindkét kapcsolásnál tetszőleges az alkatrészek sorrendje. Ez nem vonatkozik polarizált alkatrészek ( például diódák ) irányultságára.

Ellenállások

Ellenállások soros kapcsolása

Soros kapcsolás esetén az eredő ellenállás az egyes ellenállások összege. Azaz

[math]R_{soros} = R_{1} + R_{2} + \dots + R_{n}[/math]

Az ellenálláson eső feszültség soros kapcsolás esetén:

[math]U_{R_{kiszemelt}} = U_{be} \cdot \frac{R_{kiszemelt}}{R_{soros}}[/math]

ahol:

  • Ube a tápfeszültség,
  • Rkiszemelt amin akarom tudni,
  • Rsoros pedig a fent számított eredő ellenállás.

Érdemes megjegyezni, hogy az így kiszámított elemi feszültségek összege éppen a bemenő feszültséget kell hogy adja.

Az ellenálláson átfolyó áram:

[math]I = \frac{U_{be}}{R_{soros}}[/math]

Soros kapcsolás esetén minden komponens árama ugyanakkora.

Elektromos vezetéssel kifejezve:

[math]G_{soros} = \frac{1}{\frac{1}{G_1} + \frac{1}{G_2} + \dots + \frac{1}{G_n}}[/math]
Ellenállások párhuzamos kapcsolása

Párhuzamos kapcsolás esetén a az eredő vezetés az egyes ellenállások vezetésének összege. Mivel a vezetés az ellenállás reciproka (1/R), ezért

[math]R_{parhuzamos} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}}[/math]

Az ellenállásokon eső feszültség: tekintettel arra, hogy mindegyik ugyanoda van kötve, ezért megegyezik.

Az ellenállásokon átfolyó áram:

[math]I = U_{be} \cdot \frac{\frac{1}{R_{kiszemelt}}}{\frac{1}{R_{parhuzamos}}} = U_{be} \cdot \frac{R_{parhuzamos}}{R_{kiszemelt}}[/math].

Az áramok összege pedig a tápláló áram.

Elektromos vezetéssel kifejezve:

[math]G_{parhuzamos} = G_{1} + G_{2} + \dots + G_{n}[/math]
Izzók soros kapcsolása

Sorba kapcsolt izzók akkor és csak akkor világítanak üzemszerűen, ha az izzók névleges árama azonos, valamit az izzósorra kapcsolt feszültség azonos az izzók névleges feszültségeinek összegével. Ugyanakkor nem szükséges, hogy az izzók azonos teljesítményűek - illetve feszültségűek - legyenek.

Izzók párhuzamos kapcsolása

Párhuzamosan kapcsolt izzók akkor és csak akkor világítanak üzemszerűen, ha az izzók névleges feszültsége azonos, valamint az izzósorra kapcsolt tápegység képes kiadni az izzók névleges feszültségén az izzók által felvett áramerősség összegét.

Kapacitások

Kapacitások soros kapcsolása
[math]C_{soros} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}}[/math]
Kapacitások párhuzamos kapcsolása
[math]C_{parhuzamos} = C_{1} + C_{2} + \dots + C_{n}[/math]
[math]U_{parhuzamos} = min(U_{1}, U_{2}, \dots U_{n} )[/math]

ahol:

  • U a kondenzátorok feszültségtűrése

Induktivitások

Induktivitások soros kapcsolása

Ha az induktivitások között nincs csatolás:

[math]L_{soros} = L_1 + L_2 + \dots + L_n[/math]

Két, csatolásban lévő induktivitás esetén:

[math]L_{soros} = L_1 + L_2 + 2 \cdot M[/math]

ahol:

Induktivitások párhuzamos kapcsolása

Ha az induktivitások között nincs csatolás:

[math]L_{parhuzamos} = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}}[/math]

Két, csatolásban lévő induktivitás esetén:

[math]L = \frac{L_1 \cdot L_2 - M^2}{L_1 + L_ 2 - 2M}[/math]

ahol:

LC és RLC tagok

Kapacitásokból illetve induktivitásokból álló váltakozóáramú hálózat

A kapacitás reaktanciáját XC, az induktivitásét XL -lel jelöljük.

LC tagok soros kapcsolása
[math]X_{soros} = X_{L_1} + X_{L_2} + \dots + X_{L_n} - ( X_{C_1} + X_{C_2} + ... + X_{C_m} )[/math]
LC tagok párhuzamos kapcsolása
[math]X_{parhuzamos} = \frac{1}{ \frac{1}{X_{L_1}} + \frac{1}{X_{L_2}} + \dots + \frac{1}{X_{L_n}} - ( \frac{1}{X_{C_1}} + \frac{1}{X_{C_2}} + \dots + \frac{1}{X_{C_m}} ) }[/math]

Látható a fentiekből, hogy ha az XL-ek összege megegyezik az XC-k összegével, akkor soros kapcsolás esetén az eredő reaktancia zérus lesz, párhuzamos kapcsolás esetén a reciprokösszegek egyezősége esetén a reaktancia végtelen értékű lenne. Hamar rájöhetünk, hogy ez utóbbit használjuk ki párhuzamos rezgőkörök esetén.

Az elemi komponenseken eső feszultség és áram kiszámítása megegyezik az ellenállásokénál tárgyalttal, azzal a különbséggel, hogy

  • R helyett X jelölést alkalmazunk.
  • XC és XL feszültség illetve áramiránya egymáshoz viszonyítva ellentétes értékű. A feszültségek összegzésekor erre legyünk tekintettel.
Ellenállásból, kapacitásból és induktivitásból álló váltakozó áramú hálózat

Ezen rész megértéséhez a komplex számábrázolás fogalmának ismerete elengedhetetlen.

RLC tagok soros kapcsolása esetén az impedancia
[math]Z_{soros} = R_1 + R_2 + ... + R_k + j \Big( X_{L_1} + X_{L_2} + \dots + X_{L_n} - ( X_{C_1} + X_{C_2} + ... + X_{C_m} ) \Big)[/math]
RLC tagok párhuzamos kapcsolása esetén az impedancia
[math]Z_{parhuzamos} = \frac{1}{ \frac{1}{R_1} + \frac{1}{R_2} + ... + \frac{1}{R_k} - j\Big( \frac{1}{X_{L_1}} + \frac{1}{X_{L_2}} + \dots + \frac{1}{X_{L_n}} - ( \frac{1}{X_{C_1}} + \frac{1}{X_{C_2}} + \dots + \frac{1}{X_{C_m}} ) \Big) }[/math]

Az egyenlet kiszámítása során a nevezőben lesz egy valós és egy képzetes érték. A konjugálttal végigszorozva a számlálót és a nevezőt oldható meg a törtszámítás. Lásd: Komplex számábrázolás. Vagy pedig célszerű áttérni az exponenciális alakra, és azzal elvégezni az osztást.

Az egyenletből szintén látható, hogy amennyiben XL megegyezik XC-vel, akkor soros kapcsolás esetén az eredő impedancia tisztán ohmos lesz és az ellenállások összege lesz, párhuzamos kapcsolásnál pedig ebben az esetben nem csökkenti az impedanciát a komplex tag, tehát ekkor éri el az impedancia a maximumát, amit az ellenálláshálózat határoz meg.

Azt is meg kell jegyeznünk, hogy mivel

uC = i*XC,

megdöbbentően nagy feszültségek lehetnek soros kapcsolás esetén a kondenzátoron. Illetve ugyanez igaz az induktivitásra is. Miközben az egész áramkört tápláló váltakozóáramú generátor feszültsége akár nagyságrendekkel is kisebb.

Hogyan lehet ez? A kondenzátoron és az induktivitáson rezonancia esetén pontosan 180 fokos fázistolás van soros kapcsolás esetén a feszültség, párhuzamos kapcsolás esetén az áramaik közt. Ezáltal egymásba juttatják át az energiát és az áramkörön belül végeznek nagy intenzitású oszcillációt.

Diódák, tranzisztorok

Diódák soros kapcsolása

Ha egy darab egyenirányító dióda záróirányú feszültségtűrése kevés, akkor több, azonos típusú diódát kötnek sorba. Gyártási szórás miatt azonban a záróirányú ellenállás különbözik az egyes diódáknál. Így a feszültség nem egyenletesen oszlik el a diódák között. Könnyen lehet olyan dióda, amelyre túlfeszültség jut, amitől tönkremegy, magával rántva a többit. A záróirányú egyenletes feszültségeloszlást külső feszültségosztóval lehet elérni. Gyakorlatban ez minden diódával párhuzamosan kötött, azonos, aránylag nagy értékű ( pl. 100 kiloohm ) ellenállásokkal érhető el. Az ellenállásoknak is ki kell bírniuk a diódákra jutó záróirányú feszültséget.

Feszültségstabilizálásra záróirányban bekötött zener diódát és nyitóirányban bekötött diódát vagy LED-et használnak. Az így sorbakötött félvezetők jellemző feszültségei összeadódnak.

Diódák, tranzisztorok párhuzamos kapcsolása

Ha egy darab félvezetőn ( ( egyenirányító, fénykibocsátó ) diódán, tranzisztoron ) átfolyó áram ( fényerő ) kevés, akkor több, azonos típusú félvezetőt kötnek párhuzamosan. Gyártási szórás miatt azonban a nyitóirányú ellenállás különbözik az egyes félvezetőknél. Így az áram nem egyenletesen oszlik el a félvezetők között. Könnyen lehet olyan félvezető, amelyre túláram jut, amitől tönkremegy. Az egyenletes árameloszlást külső alkatrésszel lehet elérni. Gyakorlatban ez minden félvezetővel sorosan kötött, azonos, aránylag kis értékű ( pl. 0.1 ohm ) ellenállással érhető el. Az ellenállásoknak is ki kell bírniuk a diódákra jutó áramerősséget.

Különböző nyitófeszültségű ( különböző színű fénykibocsátó ) diódák közül a csak a legkisebb nyitófeszültségűn fog áram folyni.

Diódák antiparallel kapcsolása

Az antiparallel kapcsolás olyan párhuzamos kapcsolás, amelyben két polarizált alkatrész egymással ellenétesen ( szemben ) van összekapcsolva.

Antiparallel kapcsolt diódák alkalmasak váltóáramú feszültségstabilizálásra, feszültségkorlátozásra. Kétszínű LED-ek a rákapcsolt áram irányától függően különböző színnel világítanak, mindössze két kivezetés illetve vezeték felhasználásával.

Feszültség- és áramgenerátorok

Feszültséggenerátorok soros kapcsolása

Egyenfeszültség esetén:

[math]U_{0_{soros}} = U_{0_1} + U_{0_2} + \dots + U_{0_n}[/math]

A belső ellenállás:

[math]R_{b_{soros}} = R_{b_1} + R_{b_2} + \dots + R_{b_n}[/math]
Feszültséggenerátorok párhuzamos kapcsolása
[math]U_0 = \frac{G_{b_1} \cdot U_{b_1} + G_{b_2} \cdot U_{b_2} + \dots + G_{b_n} \cdot U_{b_n}}{G_{b_1} + G_{b_2} + \dots + G_{n_b}}[/math]

A belső vezetés:

[math]G_{b_{parhuzamos}} = G_{b_1} + G_{b_2} + \dots + G_{b_n}[/math]
Áramgenerátorok soros kapcsolása
[math]I_0 = \frac{ R_{b_1} \cdot I_{b_1} + R_{b_2} \cdot I_{b_2} + \dots + R_{b_n} \cdot I_{b_n}}{R_{b_1} + R_{b_2} + \dots + R_{n_b}}[/math]

A belső ellenállás:

[math]R_{b_{soros}} = R_{b_1} + R_{b_2} + \dots + R_{b_n}[/math]
Áramgenerátorok párhuzamos kapcsolása
[math]I_{b_{parhuzamos}} = I_{b_1} + I_{b_2} + \dots + I_{b_n}[/math]

A belső vezetés:

[math]G_{b_{parhuzamos}} = G_{b_1} + G_{b_2} + \dots + G_{b_n}[/math]

Áramforrások, tápegységek, feszültségstabilizátorok

Áramforrások soros kapcsolása

Sorba kapcsolt áramforrások eredő feszültsége az egyes feszültségek összege. A kivehető áram annyi, amennyit a legkisebb terhelhetőségű áramforrás ad. Az áramforrásokkal célszerű záróirányban párhuzamosan kapcsolt diódát alkalmazni.

Kettős ( +- ) áramforrás egyszerűen két, sorba kapcsolt áramforrás, ahol a földpotenciál a kivezetett középső pont.

Áramforrások párhuzamos kapcsolása

Általában azonos feszültségű áramforrásokat lehet párhuzamosan kötni. A különböző feszültségű áramforrások között kiegyenlítőáramok folyhatnak.

Tápegységeknél mindig a legmagasabb feszültségű terhelődik. Ha a kapocsfeszültsége eléri egy másikét, akkor az is kezd áramot adni. Az egyenletes terheléshez a kimenetekkel sorba kapcsolt ellenállások alkalmazhatók, ugyanúgy, mint a párhuzamosan kapcsolt tranzisztoroknál. Mivel ezek kívül esnek a szabályozási körön, csökkentik a tápegység belső ellenállását.

Feszültségstabilizátoroknál a bemenet és a kimenet közé záróirányban kötött diódát célszerű alkalmazni.

Kapcsolók (logikai műveletek)

Kapcsolók soros kapcsolása

Logikai és műveletnek felel meg. Az áramkörön akkor folyik áram, ha minden kapcsolón folyik áram.

Kapcsolók párhuzamos kapcsolása

Logikai vagy műveletnek felel meg. Az áramkörön akkor folyik áram, ha legalább egy kapcsolón folyik.

Erősítők, csillapítók

Erősítők, csillapítók soros kapcsolása

Sorbakapcsolt erősítők és/vagy csillapítók eredő erősítése az egyes erősítések szorzata:

A = A1 * A2 * . . . * An

Logaritmikus egységekkel kifejezve:

AdB = A1dB + A2dB + . . . + AndB
  • Sorosan kapcsolt teljesítményerősítők eredő erősítését számoló.
  • Sorosan kapcsolt feszültségerősítők eredő erősítését számoló.
Erősítők, csillapítók párhuzamos kapcsolása

Erősítőket párhuzamosan olyan esetekben kapcsolunk,

  • amikor azonos erősítés mellett a mindössze a kimenő impedancia csökkentése illetve a kivehető teljesítmény növelése a cél (például: rádiófrekvenciás vagy hang végfokozatok).
  • egy speciális eset, amely nem párhuzamos, hanem hídkapcsolás: ezt a tápfeszültség tartomány teljes kihasználása miatt alkalmazzuk. Ekkor dupla akkora feszültségerősítéshez jutunk (+6 dB), hiszen a híd egyik fele +1, a másik -1-szerese a feszültségre erősítésnek.

Csillapítókat párhuzamosan csak olyan esetben kapcsolunk, ha az adott rendszerben kisebb bemenő- és kimenőimpedanciára van szükségünk. Igen ritka kényszermegoldás ez.