Induktivitás

Innen: HamWiki
Ugrás a navigációhoz Ugrás a kereséshez

Az induktivitás áramköri szerepe

  • aluláteresztő szűrő (LC vagy RL) induktivitásaként - zavarszűrés (illetve tüske elnyomás)
  • kondenzátorral összekapcsolva sávszűrő (LC szűrő, rezgőkör)
  • a mágneses tér összeomlasztásán alapuló feszültségcsökkentő illetve feszültségnövelő kapcsolás fojtója

Figyelem: az induktivitás nem csak mint elemi alkatrész van jelen az elektronikában, hanem bármely vezető két pontja között úgynevezett szórt induktivitás mérhető. Szerencsére az egyenes vezetőnek kicsi az induktivitása, de nagyfrekvencián nem elhanyagolható.

Az induktivitás fogalma

Az induktivitás mértékegysége a henry, jele H. Rádiótechnikában leggyakrabban a nH, µH és mH nagyságrendbe eső tekercsekkel találkozunk. Az induktivitáson (köznapi nevén tekercsen) átfolyó áram létrehoz a tekercs körül egy mágneses teret, amely mágneses tér változása ellentétesen hat az áram növekedésére. Azaz ha tekercsre egy feszültségforrást kapcsolunk, a rajta átfolyó áram nem ugrásszerűen jön létre, hanem folyamatosan növekszik. A áram növekedésének korlátozódása a tekercs induktivitása. Azaz:

Változtatható képlet
Eredmény

[math]I = \frac{U}{L} \cdot t[/math]

ahol
  • I: a tekercsen átfolyó áram a feszültséggenerátor rákapcsolástól számított t idő mulva.
  • U: a feszültséggenerátor feszültsége
  • L: az induktivitás - amiről jelen szócikk szól.
  • t: a feszültséggenerátor rákapcsolásától számított idő.
Változtatható képlet
Eredmény
Két egymástól D távolságra futó d átmérőjű egyenes vezető
X méter hosszban (más szóval: 1 menetes tekercs)
Figyelem: a hossz a párhuzamos élek hossza, nem a huzalhossz!

Amennyiben az árammal átjárt tekercsről hirtelen leválasztjuk a feszültségforrást, az induktivitás mágneses tere megpróbálja fenntartani a rajta átfolyó áramot, ezáltal az eredetileg pozitív tápforrás felöli kapcsán igen nagy negatív feszültség jelenik meg, amely feszültség szintén a fenti képlet szerint számítható idő alatt omlasztja össze az induktivitás mágneses terét.

Az induktivitás a következő összefüggéssel számítható ki
  • egyrészt akár a fenti mérést elvégezve, a feszültség, áramerősség és idő ismeretében.
  • akár váltakozó áramon mutatott induktív reaktancia alapján, aminek speciális esete a rezgőkör rezonanciafrekvenciájából való meghatározás.
  • akár a geometriai adatai és felhasznált mag fizikai paraméterei alapján az alábbi összefüggés szerint:

[math]L = \mu_0 \mu_r \frac{A}{l} N^2 = A_L \cdot N^2[/math]

Változtatható képlet
Eredmény
Ha az egyenes tekercs hossza nagyobb, mint az átmérője.
Például: pezsgőtablettás dobozra tekert huzal, mint légmagos tekercs.
d = átmérő, l = mágneses erővonal hossza.
ahol
  • L [henry, H],
  • μ0 a vákuum permeabilitása, [V*s*A-1*m-1],
  • μr a relatív permeabilitás, [1],
  • A a tekercs keresztmetszete, [m2] (hengeres tekercsnél (d/2)2 * pi),
  • l a tekercs körül kialakuló mágneses erővonal hossza, [m] (egyenes tekercsnél 2-szerese a tekercs hosszának),
  • N a tekercs menetszáma, [1],
  • AL alaktényező avagy fajlagos induktivitás, elterjedt mértékegysége: nH/menet2

A vákuum permeabilitása: [math]\mu_0 = 4\pi\cdot10^{-7} \frac{V \cdot s}{A \cdot m} = 1.256\cdot10^{-6} \frac{V \cdot s}{A \cdot m} [/math], levegő esetén a relatív permeabilitás μr értéke 1.

Változtatható képlet
Eredmény
AL = 5400-as fazékmagra tekert 30 menet

A induktivitás hátteréről bővebben a mágneses mező című fejezetben olvashatunk.

  • Induktivitást   fajlagos induktivitásból és menetszámból számoló.
  • Menetszámot   fajlagos induktivitásból és induktivitásból számoló.
  • Fajlagos induktivitást   induktivitásból és menetszámból számoló.

Az induktivitás egyenáramú körben

Az ideális tekercs kapcsaira egy ismert feszültségű forrást kapcsolva a kialakuló áram nagysága:

[math]I = \frac{U}{L} * t[/math]

ahol
  • L az induktivitás, [L] = henry = H,
  • U a feszültség, [U] = volt = V,
  • t a feszültség rákapcsolásának ideje, [t] = másodperc = s.

Megjegyzés: a gyakorlatban csak rövid t időre kapcsoljunk a tekercs sarkaira feszültséget, majd kapcsoljuk le róla. Ellenkező esetben a kialakuló nagy áramerősség tönkreteheti a tekercset is és a tápforrást is rövidzárral terhelheti. Egyébként a kapcsolóüzemű tápegységeknél figyelhető meg ennek a jelenségnek a gyakorlati alkalmazása.

A tekercsben tárolt energia: [math]E=\frac{1}{2} L I^2[/math].

  • [E] = joule = J.
  • [I] = amper = A.

A [math]\Psi = I \cdot L\,[/math] tekercsfluxust használva [math]E = \frac{1}{2} \cdot \frac{\Psi^2}{L}\,[/math].

  • [Ψ] = weber = Wb.

Tekintettel arra, hogy a rézhuzalból készült tekercsnek van ohmos ellenállása, nézzük meg, hogyan alakul a tekercs időbeli árama, ha rákapcsolunk egy adott feszültségű tápegységet illetve ha átkapcsoljuk a gerjesztett állapotú tekercset egy R értékű terhelőellenálláson a föld felé.

TekercsEgyenfeszultsegreKapcsolasa sch.png

Gnuplot Plot

Változtatható képlet
Eredmény

A fenti ábra idő és feszültségtengelye relatív. Az feszültség tengely „1” értéke az ellenálláson átfolyó maximális áram értéke (Imax = Ut/R), az idő tengelyen úgynevezett τ érték szerepel, ahol τ = L/R. Például egy 47 mH értékű induktivitás 100 Ω értékű ellenálláson keresztüli táplálásakor az időtengely „1” értéke τ = L/R = 47*10-3/100 = 470 μs. A 2 pedig közel 1 ezredmásodperc és így tovább.

A τ érték azért fontos, mert 1 τ idő alatt (τ = L/R) egy induktivitás a rákapcsolt feszültség hatására a maximális áramának 63%-át folyatja már át illetve amikor egy gerjesztett állapotban levő tekercset a kisütőellenállásra kapcsolunk, akkor 37%-ára esik τ idő alatt vissza. Ugyanakkor a másik jellegzetes érték az 5 τ, amely esetén 99,3%-át éri el gerjesztéskor az áram, illetve kisütése esetén 5 τ idő alatt már csak 0,7 % marad a tekercsben. Tehát 5 τ idő alatt egy tekercs gyakorlatilag teljesen elveszti a tárolt energiáját.

  • Energiát   áramerősségből és induktivitásból számoló
  • Áramerősséget   energiából és induktivitásból számoló
  • Induktivitást   energiából és áramerősségből számoló
  • Induktivitást   ellenállásból és időállandóból számoló
  • Ellenállást   induktivitásból és időállandóból számoló
  • Időállandót   induktivitásból és ellenállásból számoló

Az induktivitás váltakozóáramú körben

Változtatható képlet
Eredmény

Az induktivitás látszólagos ellenállása adott frekvencián: [math]X_L = 2\pi \cdot f \cdot L = 6.283 \cdot f \cdot L[/math]

ahol
  • XL: a látszólagos ellenállás [Ω],
  • L: az induktivitás [H] és
  • f: a frekvencia [Hz].

Impedancia: [math]Z = j X_L = j 2\pi \cdot f \cdot L [ \Omega ][/math].

  • Látszólagos ellenállást és impedanciát   frekvenciából és induktivitásból számoló.
  • Induktivitást   frekvenciából és látszólagos ellenállásból vagy impedanciából számoló.
  • Frekvenciát   induktivitásból és látszólagos ellenállásból vagy impedanciából számoló.

Soros és párhuzamos kapcsolás