Szerkesztővita:Gg630504

Innen: HamWiki
A lap korábbi változatát látod, amilyen Gg630504 (vitalap | közreműködések) 2011. november 2., 18:09-kor történt szerkesztése után volt. (→‎Teszt. Nagyon teszt.: induktivitás fejlesztés áttétel innen)
Ugrás a navigációhoz Ugrás a kereséshez

Me.

  • amper - André-Marie Ampère
  • baud - Jean-Maurice-Émile Baudot
  • bel - Alexander Graham Bell
  • farad - Michael Faraday
  • neper - John Napier of Merchiston
  • poise - Jean Louis Marie Poiseuille
  • tesla - Никола Тесла
  • volt - Alessandro Giuseppe Antonio Anastasio Volta

Teszt. Nagyon teszt.

RXZ GBY PQS

R rezisztencia

hatásos ellenállás
ohmos ellenállás

X reaktancia

képzetes ellenállás
meddő ellenállás
XC kapacitív
XL induktív

Z impedancia

váltakozóáramú ellenállás
látszólagos ellenállás
Z = R + Xi

ohm
G konduktancia

hatásos vezetés
ohmos vezetés

B szuszceptancia

reaktív vezetés
meddő vezetés
BC kapacitív
BL induktív

Y admittancia

váltakozóáramú vezetés
látszólagos vezetés
Y = G + Bi

siemens
P hatásos teljesítmény

P = I*U*cos(fi) W

Q meddő teljesítmény

Q = I*U*sin(fi) var, VAr

S látszólagos teljesítmény

S = I*U VA

S, komplex teljesítmény

S = P + Q*i = U*I*

Még mindig teszt. Képletek.

0

[math] = \, [/math]

A_IJ

[math] A = \frac{I}{J}\, [/math][math] d = \sqrt{\frac{4 \cdot I}{\pi \cdot J}}\, [/math]

[math] A = I \cdot J^{-1}\, [/math][math] d = \sqrt{\frac{4 \cdot I \cdot J^{-1}}{\pi}}\, [/math]

B_DfQ

[math] B = \dfrac{f}{Q}\, [/math][math] B = D \cdot f\, [/math]

BDfQR_CLR

[math] D = 0\, [/math][math] D = \dfrac{1}{R_p} \cdot \sqrt{ \dfrac{L}{C} }\, [/math][math] D = R_s \cdot \sqrt{ \dfrac{C}{L} }\, [/math][math] D = \dfrac{1}{R_p} \cdot \sqrt{ \dfrac{L}{C} } + R_s \cdot \sqrt{ \dfrac{C}{L} }\, [/math][math] Q = \dfrac{1}{D}\, [/math][math] f = \dfrac{1}{2 \cdot \pi \cdot f \cdot \sqrt{C \cdot L }} \cdot \sqrt{1 - \dfrac{1}{4 \cdot Q^2}}\, [/math][math] B = D \cdot f\, [/math][math] R_s = 0 \ \Omega \, [/math][math] R_p = \dfrac{1}{D} \cdot \sqrt{ \dfrac{L}{C} }\, [/math][math] R_p = \infin \ \Omega \, [/math][math] R_s = D \cdot \sqrt{ \dfrac{L}{C} }\, [/math][math] Z_0 = \sqrt{ \dfrac{L}{C} }\, [/math]

Cf_LR ( elsőfokú szűrő )

[math] C = \dfrac{L}{R^2}\, [/math][math] f_v = \dfrac{R}{2 \cdot \pi \cdot L}\, [/math]

CL_fR ( elsőfokú szűrő )

[math] C = \dfrac{1}{2 \cdot \pi \cdot f_v \cdot R}\, [/math][math] L = \dfrac{R}{2 \cdot \pi \cdot f_v}\, [/math]

CR_fL ( elsőfokú szűrő )

[math] C = \dfrac{1}{4 \cdot \pi^2 \cdot {f_v}^2 \cdot L}\, [/math][math] R = 2 \cdot \pi \cdot f_v \cdot L\, [/math]

CYZ_fL

[math] C = \dfrac{1}{ \left( 2 \cdot \pi \cdot f \right)^2 \cdot L}\, [/math][math] Y_L = \dfrac{-1}{ 2 \cdot \pi \cdot f \cdot L} \cdot \mathrm{i} = -\sqrt{\dfrac{C}{L}} \cdot \mathrm{i}\, [/math][math] Z_L = 2 \cdot \pi \cdot f \cdot L\cdot \mathrm{i} = \sqrt{\dfrac{L}{C}} \cdot \mathrm{i} \, [/math]

DQ_Bf

[math] D = \dfrac{B}{f}\, [/math][math] Q = \dfrac{f}{B}\, [/math]

DQRp_CfRs

[math] D = \tan \left( \delta \right) = 2 \cdot \pi \cdot f \cdot C \cdot R_s\, [/math][math] \delta = \mathrm{atan} \left( D \right)\, [/math][math] Q = \dfrac{1}{D} = \dfrac{1}{2 \cdot \pi \cdot f \cdot C \cdot R_s}\, [/math][math] R_p = \dfrac{1}{{\left(2 \cdot \pi \cdot f \cdot C\right)}^2 \cdot R_s }\, [/math]

DQRp_fLRs

[math] D = \tan \left( \delta \right) = \dfrac{R_s}{2 \cdot \pi \cdot f \cdot L}\, [/math][math] \delta = \mathrm{atan} \left( D \right)\, [/math][math] Q = \dfrac{1}{D} = \dfrac{2 \cdot \pi \cdot f \cdot L}{R_s}\, [/math][math] R_p = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2 }{R_s }\, [/math]

DQRs_CfRp

[math] D = \tan \left( \delta \right) = \dfrac{1}{2 \cdot \pi \cdot f \cdot C \cdot R_p }\, [/math][math] \delta = \mathrm{atan} \left( D \right)\, [/math][math] Q = \dfrac{1}{D} = 2 \cdot \pi \cdot f \cdot C \cdot R_p\, [/math][math] R_s = \dfrac{1}{{\left(2 \cdot \pi \cdot f \cdot C\right)}^2 \cdot R_p }\, [/math]

DQRs_fLRp

[math] D = \tan \left( \delta \right) = \dfrac{2 \cdot \pi \cdot f \cdot L}{ R_p }\, [/math][math] \delta = \mathrm{atan} \left( D \right)\, [/math][math] Q = \dfrac{1}{D} = \dfrac{R_p}{2 \cdot \pi \cdot f \cdot L }\, [/math][math] R_s = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2}{R_p }\, [/math]

f_BDQ

[math] f = \dfrac{B}{D}\, [/math][math] f = B \cdot Q\, [/math]

fL_CR ( elsőfokú szűrő )

[math] f_v = \dfrac{1}{2 \cdot \pi \cdot\ C \cdot R}\, [/math][math] L = C \cdot R^2\, [/math]

fR_CL ( elsőfokú szűrő )

[math] f_v = \dfrac{1}{2 \cdot \pi \cdot\ \sqrt{C \cdot L}}\, [/math][math] R = \sqrt\frac{L}{C}\, [/math]

h_Rbt

[math] h = R_b \cdot t\, [/math]

I_AJ

[math] I = A \cdot J\, [/math][math] I = \frac{\pi \cdot d^2 \cdot J}{4}\, [/math][math] I = \pi \cdot r^2 \cdot J\, [/math]

[math] I = \frac{A}{J^{-1}}\, [/math][math] I = \frac{\pi \cdot d^2}{4 \cdot J^{-1}}\, [/math][math] I = \frac{\pi \cdot r^2}{J^{-1}}\, [/math]

J_AI

[math] J = \frac{I}{A}\, [/math][math] J = \frac{4 \cdot I}{\pi \cdot d^2}\, [/math][math] J = \frac{I}{\pi \cdot r^2}\, [/math]

[math] J^{-1} = \frac{A}{I}\, [/math][math] J^{-1} = \frac{\pi \cdot d^2}{4 \cdot I}\, [/math][math] J^{-1} = \frac{\pi \cdot r^2}{I}\, [/math]

LR_Cf ( elsőfokú szűrő )

[math] L = \frac{1}{4 \cdot \pi^2 \cdot C \cdot {f_v}^2}\, [/math][math] R = \frac{1}{2 \cdot \pi \cdot C \cdot f_v}\, [/math]

l_RRl

[math] l = \frac{R}{R'} = \frac{A \cdot R}{\rho}\, [/math]

l_tv

[math] l = t \cdot v\, [/math]

Rb_ht

[math] R_b = \dfrac{h}{t}\, [/math]

Rl_lR

[math] R' = \frac{R}{l} = \frac{\rho}{A}\, [/math]

R_lRl

[math] R = l \cdot R' = \frac{l \cdot \rho}{A}\, [/math]

t_hRb

[math] t = \dfrac{h}{R_b}\, [/math]

t_lv

[math] t = \dfrac{l}{v}\, [/math]

v_lt

[math] v = \dfrac{l}{t}\, [/math]

Képletek.

a

[math] \pi \approx 3,141592653589793\, [/math] ;

[math] e \approx 2,718281828459045\, [/math] ;

[math] c = 299792458 \ \mathrm{m/s}\, [/math] ;

[math] \epsilon_0 = \frac{1}{\mu_0 \cdot c^2}\ \mathrm{F/m} \approx 8,85418781762039 \ \mathrm{pF/m} \, [/math] ;

[math] \mu_0 = 4 \cdot \pi \cdot 10^{-7} \ \mathrm{H/m} \approx 1,2566370614359172 \ \mu\mathrm{H/m}\, [/math] ;

[math] k = 13,806488(13) \ \mathrm{yJ/K}\, [/math] ;

[math] A \ dB \; U \ V = 10^{\frac{A}{20}} \cdot U \ V\, [/math] ; [math] A \ dB \; P \ W \; R \ \Omega = 10^{\frac{A}{20}} \cdot \sqrt{ P \cdot R } \ V\, [/math] ;

[math] A \ Np \ U \ V = e^A \cdot U \ V\, [/math] ; [math] A \ Np \; P \ W \; R \ \Omega = e^A \cdot \sqrt{ P \cdot R } \ V\, [/math] ;

[math] A \ dB \; P \ W = 10^{\frac{A}{10}} \cdot P \ W\, [/math] ;

[math] A \ Np \; P \ W = e^{2 \cdot A} \cdot P \ W\, [/math] ;

[math] A = a^2\, [/math] ; [math] A = a \cdot b\, [/math] ; [math] A = \frac{\pi}{4}\cdot d^2\, [/math] ; [math] A = \pi \cdot r^2\, [/math] ;

[math] a = \sqrt A\, [/math] ;

[math] d = 2 \cdot r\, [/math] ; [math] d = 2 \sqrt \frac {A}{\pi}\, [/math] ; [math] d = 127 \cdot 10^{-6} \cdot 92^\frac{36-AWG}{39} \; \mathrm{m}\, [/math] ;

[math] r = \frac{d}{2}\, [/math] ; [math] r = \sqrt \frac {A}{\pi}\, [/math] ;

[math] AWG = 36-39 \cdot \log_{92}\left( \frac{d}{127 \cdot 10^{-6} \; \mathrm{m}} \right)\,[/math] ;

[math] \Re() [/math] ; [math] \Im() [/math] ;

[math] Z = 40 \; \Omega + 30 \cdot \mathrm{i} \; \Omega = \Re(Z) + \Im(Z) \cdot \mathrm{i} \, [/math] ;

[math] \Re(Z) = 40 \; \Omega ; \;\; \Im(Z) = 30 \; \Omega \, [/math]

b

[math] R_s = R_0 + R_1 + \dots + R_n\, [/math] ; [math] R_p = \frac{1}{\frac{1}{R_0} + \frac{1}{R_1} + \dots + \frac{1}{R_n}}\, [/math] ; [math] R_1 = R_s - R_0\, [/math] ; [math] R_1 = \frac{1}{\frac{1}{R_p} - \frac{1}{R_0}}\, [/math] ;

[math] C_p = C_0 + C_1 + \dots + C_n\, [/math] ; [math] C_s = \frac{1}{\frac{1}{C_0} + \frac{1}{C_1} + \dots + \frac{1}{C_n}}\, [/math] ; [math] C_1 = C_p - C_0\, [/math] ; [math] C_1 = \frac{1}{\frac{1}{C_s} - \frac{1}{C_0}}\, [/math] ;


[math] L_s = L_0 + L_1 + 2 \cdot M\, [/math] ; [math] L_p = \frac{L_0 \cdot L_1 + M^2}{L_0 + L_1 - 2 \cdot M}\, [/math] ;

[math] R_x = \frac{N-2}{N} \cdot R\, [/math]; [math] A = 20 \cdot \lg\left( \frac{1}{N-1} \right)\, [/math]; [math] A = \frac{1}{N-1}\, [/math];


[math] R_{01} = \frac{R_0 \cdot R_1}{R_2} + R_0 + R_1\, [/math] ; [math] R_{02} = \frac{R_0 \cdot R_2}{R_1} + R_0 + R_2\, [/math] ; [math] R_{12} = \frac{R_1 \cdot R_2}{R_0} + R_1 + R_2\, [/math] ;

[math] R_0 = \frac{R_{01} \cdot R_{02}}{R_{01} + R_{02} + R_{12}}\, [/math] ; [math] R_1 = \frac{R_{01} \cdot R_{12}}{R_{01} + R_{02} + R_{12}}\, [/math] ; [math] R_2 = \frac{R_{02} \cdot R_{12}}{R_{01} + R_{02} + R_{12}}\, [/math] ;

[math] Z_s = Z_0 + Z_1 + \dots + Z_n\, [/math] ; [math] Y_s = \frac{1}{Z_s}\,[/math]; [math] Y_s = Y_0 + Y_1 + \dots + Y_n\, [/math] ;[math] Z_s = \frac{1}{Y_s}\,[/math];

c

[math] a = 10^{- \frac{A}{20}}\, [/math] ; [math] a = \frac{1}{\sqrt A}\, [/math] ;

[math] R_0 = \frac{ \left( a^2-1 \right) \cdot R_b \cdot \sqrt R_k }{\left(a^2+1\right) \cdot \sqrt R_k - 2 \cdot a \cdot \sqrt R_b}\, [/math] ; [math] R_1 = \frac{\left( a^2-1 \right) \cdot \sqrt {R_b \cdot R_k} }{2 \cdot a}\, [/math] ; [math] R_2 = \frac{ \left( a^2-1 \right) \cdot R_k \cdot \sqrt R_b }{\left(a^2+1\right) \cdot \sqrt R_b - 2 \cdot a \cdot \sqrt R_k}\, [/math] ;

[math] R_3 = \frac{\left(a^2+1\right)\cdot R_b - 2 \cdot a \cdot \sqrt {R_b \cdot R_k}}{a^2-1}\, [/math] ; [math] R_4 = \frac{2 \cdot a \cdot \sqrt {R_b \cdot R_k}}{a^2-1}\, [/math] ; [math] R_5 = \frac{\left(a^2+1\right)\cdot R_k - 2 \cdot a \cdot \sqrt {R_b \cdot R_k}}{a^2-1}\, [/math] ;

[math] R_6 = R_{bk}\, [/math] ; [math] R_7 = \frac{R_{bk}}{a-1}\, [/math] ; [math] R_8 = R_{bk}\, [/math] ; [math] R_9 = \left(a-1\right) \cdot R_{bk}\, [/math] ;

[math] R_{10} = \frac{ \left( a^2-1 \right) \cdot R_b \cdot \sqrt R_k }{\left(a^2+1\right) \cdot \sqrt R_k - 2 \cdot a \cdot \sqrt R_b}\, [/math] ; [math] R_{11} = \frac{\left( a^2-1 \right) \cdot \sqrt {R_b \cdot R_k} }{4 \cdot a}\, [/math] ; [math] R_{12} = \frac{\left( a^2-1 \right) \cdot \sqrt {R_b \cdot R_k} }{4 \cdot a}\, [/math] ; [math] R_{13} = \frac{ \left( a^2-1 \right) \cdot R_k \cdot \sqrt R_b }{\left(a^2+1\right) \cdot \sqrt R_b - 2 \cdot a \cdot \sqrt R_k}\, [/math] ;

[math] R_{14} = \frac{\left(a^2+1\right)\cdot R_b - 2 \cdot a \cdot \sqrt {R_b \cdot R_k}}{2 \cdot \left(a^2-1\right)}\, [/math] ; [math] R_{15} = \frac{\left(a^2+1\right)\cdot R_b - 2 \cdot a \cdot \sqrt {R_b \cdot R_k}}{2 \cdot \left(a^2-1\right)}\, [/math] ; [math] R_{16} = \frac{2 \cdot a \cdot \sqrt {R_b \cdot R_k}}{a^2-1}\, [/math] ; [math] R_{17} = \frac{\left(a^2+1\right)\cdot R_k - 2 \cdot a \cdot \sqrt {R_b \cdot R_k}}{2 \cdot \left(a^2-1\right)}\, [/math] ; [math] R_{18} = \frac{\left(a^2+1\right)\cdot R_k - 2 \cdot a \cdot \sqrt {R_b \cdot R_k}}{2 \cdot \left(a^2-1\right)}\, [/math] ;

d

[math] G = \frac{1}{R}\, [/math] ; [math] G = \frac{I^2}{P}\, [/math] ; [math] G = \frac{I}{U}\, [/math] ; [math] G = \frac{P}{U^2}\, [/math] ;

[math] I = \frac{P}{U}\, [/math] ; [math] I = \frac{U}{R}\, [/math] ; [math] I = G \cdot U\, [/math] ; [math] I = \sqrt \frac{P}{R}\, [/math] ; [math] I = \sqrt {G \cdot P}\, [/math] ;

[math] P = \frac{I^2}{G}\, [/math] ; [math] P = \frac{U^2}{R}\, [/math] ; [math] P = G \cdot U^2\, [/math] ; [math] P = I^2 \cdot R\, [/math] ; [math] P = I \cdot U\, [/math] ;

[math] R = \frac{1}{G}\, [/math] ; [math] R = \frac{P}{I^2}\, [/math] ; [math] R = \frac{U^2}{P}\, [/math] ; [math] R = \frac{U}{I}\, [/math] ;

[math] U = \frac{I}{G}\, [/math] ; [math] U = \frac{P}{I}\, [/math] ; [math] U = I \cdot R\, [/math] ; [math] U = \sqrt \frac{P}{G}\, [/math] ; [math] U = \sqrt {P \cdot R}\, [/math] ;

[math] A = \frac{l \cdot \rho}{R}\, [/math] ; [math] A = \frac{l }{\gamma \cdot R}\, [/math] ; [math] A = G \cdot l \cdot \rho\, [/math] ; [math] A = \frac{G \cdot l }{\gamma}\, [/math] ;


[math] l = \frac{A \cdot R}{\rho}\, [/math] ; [math] l = A \cdot R \cdot \gamma\, [/math] ; [math] l = \frac{A}{G \cdot \rho}\, [/math] ; [math] l = \frac{A \cdot \gamma}{G}\, [/math] ;


[math] R = \frac{l \cdot \rho}{A}\, [/math] ; [math] R = \frac{l}{A \cdot \gamma}\, [/math] ; [math] G = \frac{A \cdot \gamma}{l}\, [/math] ; [math] G = \frac{A }{l \cdot \rho}\, [/math] ;


[math] \rho = \frac{A \cdot R}{l}\, [/math] ; [math] \gamma = \frac{l}{A \cdot R}\, [/math] ;

[math] I = \frac{Q}{t}\, [/math] ; [math] Q = I \cdot t\, [/math] ; [math] t = \frac{Q}{I}\, [/math] ;

e

[math] C = \frac{1}{2 \cdot \pi \cdot f \cdot X_C}\, [/math] ; [math] C = \frac{-1}{2 \cdot \pi \cdot f \cdot Z } \cdot \mathrm{i}\, [/math] ; [math] f = \frac{1}{2 \cdot \pi \cdot C \cdot X_C}\, [/math] ; [math] f = \frac{-1}{2 \cdot \pi \cdot C \cdot Z } \cdot \mathrm{i}\, [/math] ; [math] X_C = \frac{1}{2 \cdot \pi \cdot f \cdot C}\, [/math] ; [math] Z = \frac{-1}{2 \cdot \pi \cdot f \cdot C } \cdot \mathrm{i}\, [/math] ; [math] Y = 2 \cdot \pi \cdot f \cdot C \cdot \mathrm{i}\, [/math] ;

[math] L = \frac{X_L}{2 \cdot \pi \cdot f}\, [/math] ; [math] L = \frac{-Z}{2 \cdot \pi \cdot f }\cdot \mathrm{i}\, [/math] ; [math] f = \frac{X_L}{2 \cdot \pi \cdot L}\, [/math] ; [math] f = \frac{-Z}{2 \cdot \pi \cdot L }\cdot \mathrm{i}\, [/math] ; [math] X_L = 2 \cdot \pi \cdot f \cdot L\, [/math] ; [math] Z = 2 \cdot \pi \cdot f \cdot L \cdot \mathrm{i}\, [/math] ; [math] Y = \frac{-1}{2 \cdot \pi \cdot f \cdot L }\cdot \mathrm{i}\, [/math] ;

[math] C = \frac{1}{{\left( 2 \cdot \pi \cdot f \right)}^2 \cdot L }\, [/math] ; [math] f = \frac{1}{2\cdot \pi \cdot \sqrt{C \cdot L}}\, [/math] ; [math] L = \frac{1}{{\left( 2 \cdot \pi \cdot f \right)}^2 \cdot C }\, [/math] ; [math] |Z| = \frac{1}{2 \cdot \pi \cdot f \cdot C } = 2 \cdot \pi \cdot f \cdot L\, [/math] ; [math] |Y| = 2 \cdot \pi \cdot f \cdot C = \frac{1}{2 \cdot \pi \cdot f \cdot L}\, [/math] ;

[math] C = \frac{I}{2 \cdot \pi \cdot f \cdot U}\, [/math] ; [math] f = \frac{I}{2 \cdot \pi \cdot C \cdot U}\, [/math] ; [math] I = 2 \cdot \pi \cdot C \cdot f \cdot U\, [/math] ; [math] U = \frac{I}{2 \cdot \pi \cdot C \cdot f}\, [/math] ;

f

[math] T =\frac{1}{f}\, [/math] ; [math] f =\frac{1}{T}\, [/math] ;

[math] \lambda = \frac{v}{f}\, [/math] ; [math] f = \frac{v}{\lambda}\, [/math] ;

[math] \lambda = k \cdot \frac{c}{f}\, [/math] ; [math] f = k \cdot \frac{c}{\lambda}\, [/math] ;

[math] \lambda = \frac{1}{\sqrt{\epsilon_r}} \cdot \frac{c}{f}\, [/math] ; [math] f = \frac{1}{\sqrt{\epsilon_r}} \cdot \frac{c}{\lambda}\, [/math] ;

[math] l = \mathrm{k}\left(\frac{\lambda}{d}\right) \cdot \lambda\, [/math] ; [math] Q = 1,3 \cdot \left( \ln\left(\frac{\lambda}{d}\right)-1\right)\, [/math] ; [math] B = \frac{f}{Q}\, [/math] ;


[math] T = \frac{1}{B}\, [/math] ;

g

[math] N = \sqrt{\frac{L}{A_L}}\, [/math] ; [math] L = A_L \cdot N^2\, [/math] ; [math] A_L = \frac{L}{N^2}\, [/math] ;

[math] R_2 = \frac{U_{out} - U_{ref}}{\frac{U_{ref}}{R_1} + I_{adj}}\, [/math] ; [math] P_2 = {\left(\frac{U_{ref}}{R_1} + I_{adj}\right)}^2 \cdot R_2\, [/math] ; [math] U_{out} = \left( 1 + \frac{R_2}{R_1} \right) \cdot U_{ref} + I_{adj} \cdot R_2\, [/math] ;

h - tekercs

egyenes huzal

[math]L = \frac{1}{2 \cdot \pi} \cdot \mu_r \cdot \mu_0 \cdot a \cdot \left(\ln\left(\frac{4 \cdot a}{d_h}\right) - 0,75\right) [/math];

egyenlő oldalú háromszög

[math] a_a = a_b + \sqrt{3} \cdot d_h\, [/math] ; [math] a_b = a_a - \sqrt{3} \cdot d_h\, [/math] ; [math] L = \frac{3}{2 \cdot \pi} \cdot \mu_r \cdot \mu_0 \cdot a_a \cdot N^2 \cdot \left(\ln\left(\frac{2 \cdot a_a}{d_h}\right)-1,405\right)\, [/math] ; [math] N = \sqrt\frac{2 \cdot \pi \cdot L}{3 \cdot \mu_r \cdot \mu_0 \cdot a_a \cdot \left(\ln\left(\frac{2 \cdot a_a}{d_h}\right)-1,405\right)}\, [/math] ; [math] l_h = N \cdot 3 \cdot a_a\, [/math] ;

négyzet

[math] a_a = a_b + d_h\, [/math] ; [math] a_b = a_a - d_h\, [/math] ; [math] L = \frac{2}{\pi} \cdot \mu_r \cdot \mu_0 \cdot a_a \cdot N^2 \cdot \left(\ln\left(\frac{2 \cdot a_a}{d_h}\right)-0,774\right)\, [/math] ; [math] N = \sqrt\frac{\pi \cdot L}{2 \cdot \mu_r \cdot \mu_0 \cdot a_a \cdot \left(\ln\left(\frac{2 \cdot a_a}{d_h}\right)-0,774\right)}\, [/math] ; [math] l_h = N \cdot 4 \cdot a_a\, [/math] ;

kör

[math] d_a = d_b + d_h\, [/math] ; [math] d_a = 2 \cdot r_a\, [/math] ; [math] d_a = 2 \cdot r_b + d_h\, [/math] ; [math] d_b = d_a - d_h\, [/math] ; [math] L = \frac{1}{2} \cdot \mu_r \cdot \mu_0 \cdot d_a \cdot N^2 \cdot \left(\ln\left(\frac{8\cdot d_a}{d_h}\right)-2\right)\, [/math] ; [math] N = \sqrt\frac{2 \cdot L}{\mu_r \cdot \mu_0 \cdot d_a \cdot \left(\ln\left(\frac{8\cdot d_a}{d_h}\right)-2\right)}\, [/math] ; [math] l_h = N \cdot \pi \cdot d_a\, [/math] ;

egysoros tekercs

[math]L_0 = \frac{d_a \cdot N^2}{ 0,14 \cdot l_a / d_a + 0,04} \,[/math] ; [math]L_0 = \frac{\mu_r \cdot \mu_0 \cdot {d_a}^2 \cdot N^2}{1,7593 \cdot l_a + 0,50266 \cdot d_a} \,[/math] ;

[math]L_1 = \frac{d_a^2 \cdot N^2}{100 \cdot l_a + 45 \cdot d_a} \,[/math] ; [math]L_1 = \frac{\mu_r \cdot \mu_0 \cdot {d_a}^2 \cdot N^2}{1,2566 \cdot l_a + 0,56549 \cdot d_a} \,[/math] ;

[math]L_2 = \frac{{r_a}^2 \cdot N^2}{10 \cdot l_a + 9 \cdot r_a} \,[/math] ; [math]L_2 = \frac{\mu_r \cdot \mu_0 \cdot {d_a}^2 \cdot N^2}{1,2767 \cdot l_a + 0,57454 \cdot d_a} \,[/math]

[math]L_3 = k \cdot d_a \cdot N^2 \,[/math] ; [math]L_3 = k \cdot \mu_r \cdot \mu_0 \cdot d_a \cdot N^2 \,[/math] ;

[math] 0,01 \leq \frac{d_a}{l_a} \leq 1 \longrightarrow k = 8,04 \cdot 10^{-3} \cdot \left( \frac{d_a}{l_a} \right)^{0,912} \,[/math] ;

[math] 0,01 \leq \frac{d_a}{l_a} \leq 1 \longrightarrow k = 0,64 \cdot \left( \frac{d_a}{l_a} \right)^{0,912} \,[/math] ;

[math] 1 \lt \frac{d_a}{l_a} \leq 100 \longrightarrow k = 8,19 \cdot 10^{-3} + 6,84 \cdot 10^{-3} \cdot \ln \left( \frac{d_a}{l_a} \right) \,[/math] ;

[math] 1 \lt \frac{d_a}{l_a} \leq 100 \longrightarrow k = 0,652 + 0,544 \cdot \ln \left( \frac{d_a}{l_a} \right) \,[/math] ;

[math]l_h = \sqrt{ \left( N \cdot \pi \cdot d_a \right)^2 + {l_a}^2}\, [/math] ;

[math] l_a = \frac{N - 0,5}{N} \cdot \left( l_k - d_h \right)\, [/math] ; [math] l_k = d_h + \frac{N}{N - 0,5} \cdot l_a\, [/math] ;

i

[math] A_P = \frac{P_k}{P_b}\, [/math] ; [math] A_U = \frac{U_k}{U_b}\, [/math] ;

[math] P_k = A_P \cdot P_b\, [/math] ; [math] U_k = A_U \cdot U_b\, [/math] ;

[math] A_{Ps} = A_{P0} \cdot \dots \cdot A_{P4}\, [/math] ; [math] A_{Us} = A_{U0} \cdot \dots \cdot A_{U4}\, [/math] ;

[math] G_p = G_0 + \dots + G_{n-1}\, [/math] ; [math] G_s = \frac{1}{\frac{1}{G_0} + \dots + \frac{1}{G_{n-1}}}\, [/math] ;


[math] f_o = k_0 \cdot f_0 + \dots + k_{n-1} \cdot f_{n-1}\, [/math] ; [math] f_{sz} = \frac{ k_0 \cdot f_0 + \dots + k_{n-1} \cdot f_{n-1} }{ n }\, [/math] ; [math] f_m = \sqrt[n] { k_0 \cdot f_0 \cdot \dots \cdot k_{n-1} \cdot f_{n-1} }\, [/math] ; [math] f_h = \frac{ n }{ \frac{1}{k_0 \cdot f_0} + \dots + \frac{1}{k_{n-1} \cdot f_{n-1}} }\, [/math] ; [math] f_n = \sqrt { \frac{{\left(k_0 \cdot f_0 \right) }^2 + \dots + {\left( k_{n-1} \cdot f_{n-1} \right)}^2 }{n} }\, [/math] ;

[math] I_o = I_0 + \dots + I_{n-1}\, [/math] ; [math] I_{sz} = \frac{ I_0 + \dots + I_{n-1} }{ n }\, [/math] ; [math] I_m = \sqrt[n] { I_0 \cdot \dots \cdot I_{n-1} }\, [/math] ; [math] I_h = \frac{ n }{ \frac{1}{I_0} + \dots + \frac{1}{I_{n-1}} }\, [/math] ; [math] I_n = \sqrt { \frac{{I_0}^2 + \dots + {I_{n-1}}^2 }{n} }\, [/math] ;


[math] l_o = l_0 + \dots + l_{n-1}\, [/math] ; [math] l_{sz} = \frac{ l_0 + \dots + l_{n-1} }{ n }\, [/math] ; [math] l_m = \sqrt[n] { l_0 \cdot \dots \cdot l_{n-1} }\, [/math] ; [math] l_h = \frac{ n }{ \frac{1}{l_0} + \dots + \frac{1}{l_{n-1}} }\, [/math] ; [math] l_n = \sqrt { \frac{{l_0}^2 + \dots + {l_{n-1}}^2 }{n} }\, [/math] ;


[math] P_o = P_0 + \dots + P_{n-1}\, [/math] ; [math] P_{sz} = \frac{ P_0 + \dots + P_{n-1} }{ n }\, [/math] ; [math] P_m = \sqrt[n] { P_0 \cdot \dots \cdot P_{n-1} }\, [/math] ; [math] P_h = \frac{ n }{ \frac{1}{P_0} + \dots + \frac{1}{P_{n-1}} }\, [/math] ; [math] P_n = \sqrt { \frac{{P_0}^2 + \dots + {P_{n-1}}^2 }{n} }\, [/math] ;


[math] t_o = t_0 + \dots + t_{n-1}\, [/math] ; [math] t_{sz} = \frac{ t_0 + \dots + t_{n-1} }{ n }\, [/math] ; [math] t_m = \sqrt[n] { t_0 \cdot \dots \cdot t_{n-1} }\, [/math] ; [math] t_h = \frac{ n }{ \frac{1}{t_0} + \dots + \frac{1}{t_{n-1}} }\, [/math] ; [math] t_n = \sqrt { \frac{{t_0}^2 + \dots + {t_{n-1}}^2 }{n} }\, [/math] ;

[math] U_o = U_0 + \dots + U_{n-1}\, [/math] ; [math] U_{sz} = \frac{ U_0 + \dots + U_{n-1} }{ n }\, [/math] ; [math] U_m = \sqrt[n] { U_0 \cdot \dots \cdot U_{n-1} }\, [/math] ; [math] U_h = \frac{ n }{ \frac{1}{U_0} + \dots + \frac{1}{U_{n-1}} }\, [/math] ; [math] U_n = \sqrt { \frac{{U_0}^2 + \dots + {U_{n-1}}^2 }{n} }\, [/math] ;

[math] G_s = G_0 + \dots + G_{n-1}\, [/math] ; [math] G_{sz} = \frac{ G_0 + \dots + G_{n-1} }{ n }\, [/math] ; [math] G_m = \sqrt[n] { G_0 \cdot \dots \cdot G_{n-1} }\, [/math] ; [math] G_h = \frac{ n }{ \frac{1}{G_0} + \dots + \frac{1}{G_{n-1}} }\, [/math] ; [math] G_n = \sqrt { \frac{{G_0}^2 + \dots + {G_{n-1}}^2 }{n} }\, [/math] ;

[math] R_s = R_0 + \dots + R_{n-1}\, [/math] ; [math] R_{sz} = \frac{ R_0 + \dots + R_{n-1} }{ n }\, [/math] ; [math] R_m = \sqrt[n] { R_0 \cdot \dots \cdot R_{n-1} }\, [/math] ; [math] R_h = \frac{ n }{ \frac{1}{R_0} + \dots + \frac{1}{R_{n-1}} }\, [/math] ; [math] R_n = \sqrt { \frac{{R_0}^2 + \dots + {R_{n-1}}^2 }{n} }\, [/math] ;

[math] C_p = C_0 + \dots + C_{n-1}\, [/math] ; [math] C_{sz} = \frac{ C_0 + \dots + C_{n-1} }{ n }\, [/math] ; [math] C_m = \sqrt[n] { C_0 \cdot \dots \cdot C_{n-1} }\, [/math] ; [math] C_h = \frac{ n }{ \frac{1}{C_0} + \dots + \frac{1}{C_{n-1}} }\, [/math] ; [math] C_n = \sqrt { \frac{{C_0}^2 + \dots + {C_{n-1}}^2 }{n} }\, [/math] ;


[math] Z_o = Z_0 + \dots + Z_{n-1}\, [/math] ; [math] Z_{sz} = \frac{ Z_0 + \dots + Z_{n-1} }{ n }\, [/math] ; [math] Z_m = \sqrt[n] { Z_0 \cdot \dots \cdot Z_{n-1} }\, [/math] ; [math] Z_h = \frac{ n }{ \frac{1}{Z_0} + \dots + \frac{1}{Z_{n-1}} }\, [/math] ; [math] Z_n = \sqrt { \frac{{Z_0}^2 + \dots + {Z_{n-1}}^2 }{n} }\, [/math] ; [math] Y_o = \frac{1}{Z_o}\, [/math] ;


[math] Y_o = Y_0 + \dots + Y_{n-1}\, [/math] ; [math] Y_{sz} = \frac{ Y_0 + \dots + Y_{n-1} }{ n }\, [/math] ; [math] Y_m = \sqrt[n] { Y_0 \cdot \dots \cdot Y_{n-1} }\, [/math] ; [math] Y_h = \frac{ n }{ \frac{1}{Y_0} + \dots + \frac{1}{Z_{n-1}} }\, [/math] ; [math] Y_n = \sqrt { \frac{{Y_0}^2 + \dots + {Y_{n-1}}^2 }{n} }\, [/math] ; [math] Z_o = \frac{1}{Y_o}\, [/math] ;


[math] U_R = U_b - (k_0 \cdot U_{LED0} + \dots + k_4 \cdot U_{LED4})\, [/math] ; [math] R_s = \frac{U_R}{I}\, [/math] ; [math] P_s = \frac{{U_R}^2}{R_s}\, [/math] ;

[math] R_0 = \frac{U_b-U_k}{I}\, [/math] ; [math] R_1 = \frac{U_k}{I}\, [/math] ;

[math] R_0 = \frac{U_b-U_k}{I}\, [/math] ; [math] R_1 = \frac{R_k \cdot U_k}{I \cdot R_k - U_k}\, [/math] ;

[math] U_K = \frac{R_1 \cdot U_b}{R_0 + R_1}\, [/math] ; [math] U_K = \frac{R_2 \cdot U_b}{R_0 + R_2}; R_2 = \frac{R_1 \cdot R_k}{R_1 + R_k}\, [/math] ;

[math] \Delta U = U_K-U_k\, [/math] ;

[math] P_0 = \frac{{\left(U_b-U_K\right)}^2}{R_0}\, [/math] ; [math] P_1 = \frac{{U_K}^2}{R_1}\, [/math] ;

[math] I = \frac{I_0 \cdot t_0 + \cdots + I_{n-1} \cdot t_{n-1}} {t_0 + \cdots + t_{n-1} }\, [/math] ; [math] I = I_0\, [/math] ; [math] t = \frac{Q}{I}\, [/math] ;

j Maros, Titán, Veszprém

[math] f_{MT\_RXU} = (f_v+10,7\cdot 10^6 \mathrm{Hz}) / 3\, [/math] ; [math] f_{MT\_RXL} = (f_v-10,7\cdot 10^6 \mathrm{Hz}) / 3\, [/math] ; [math] f_{MT\_TX} = f_v / 18\, [/math] ;

[math] f_{V\_RXU} = (f_v+455\cdot 10^3 \mathrm{Hz}) / 15\, [/math] ; [math] f_{V\_RXL} = (f_v-455\cdot 10^3 \mathrm{Hz}) / 17\, [/math] ; [math] f_{V\_TX} = f_v / 24\, [/math] ;

[math] f_{MT\_RXU} = 3 \cdot f_k-10,7\cdot 10^6 \mathrm{Hz}\, [/math] ; [math] f_{MT\_RXL} = 3 \cdot f_k+10,7\cdot 10^6 \mathrm{Hz}\, [/math] ; [math] f_{MT\_TX} = 18 \cdot f_k\, [/math] ;

[math] f_{V\_RXU} = 15 \cdot f_k-455\cdot 10^3 \mathrm{Hz}\, [/math] ; [math] f_{V\_RXL} = 17 \cdot f_k+455\cdot 10^3 \mathrm{Hz}\, [/math] ; [math] f_{V\_TX} = 24 \cdot f_k\, [/math] ;

k ( τ, E(C,R) )

[math] C = \frac{\tau}{R}\, [/math] ; [math] L = R \cdot \tau\, [/math] ;

[math] C = \frac{\tau^2}{L}\, [/math] ; [math] R = \frac{L}{\tau}\, [/math] ;

[math] C = \frac{L}{R^2}\, [/math] ; [math] \tau = \frac{L}{R}\, [/math] ;

[math] L = \frac{\tau^2}{C}\, [/math] ; [math] R = \frac{\tau}{C}\, [/math] ;

[math] L = C \cdot R^2\,[/math] ; [math] \tau = C \cdot R\, [/math] ;

[math] R = \sqrt{\frac{L}{C}}\,[/math] ; [math] \tau = \sqrt{C \cdot L}\, [/math] ;


[math] C = \frac{Q}{U}\, [/math] ; [math] E = \frac{Q \cdot U}{2}\, [/math] ;

[math] C = \frac{2 \cdot E}{U^2}\, [/math] ; [math] Q = \frac{2 \cdot E}{U}\, [/math] ;

[math] C = \frac{Q^2}{2 \cdot E}\, [/math] ; [math] U = \frac{2 \cdot E}{Q}\, [/math] ;

[math] E = \frac{C \cdot U^2}{2}\, [/math] ;[math]Q = C \cdot U\, [/math] ;

[math] E = \frac{Q^2}{2 \cdot C}\, [/math] ;[math]U = \frac{Q}{C}\, [/math] ;

[math] Q = \sqrt{2 \cdot C \cdot E}\,[/math] ; [math] U = \sqrt{\frac{E}{2 \cdot C}}\, [/math] ;


[math] E = \frac{\Psi^2}{2 \cdot L}\, [/math] ; [math] I = \frac{\Psi}{L}\, [/math] ;

[math] E = \frac{I \cdot \Psi}{2}\, [/math] ; [math] L = \frac{\Psi}{I}\, [/math] ;

[math] E = \frac{I^2 \cdot L}{2}\, [/math] ; [math] \Psi = I \cdot L\, [/math] ;

[math] I = \frac{2 \cdot E}{\Psi}\, [/math] ; [math] L = \frac{\Psi^2}{2 \cdot E}\, [/math] ;

[math] I = \sqrt{\frac{2 \cdot E}{L}}\,[/math] ; [math] \Psi = \sqrt{2 \cdot E \cdot L}\, [/math] ;

[math] L = \frac{2 \cdot E}{I^2}\, [/math] ; [math] \Psi = \frac{2 \cdot E}{I}\, [/math] ;


[math] C_\uparrow = \frac{-t}{R \cdot \ln \left( 1-\frac{U_{C}}{U_b} \right)} \,[/math] ; [math] C_\downarrow = \frac{-t}{R \cdot \ln \left( \frac{U_{C}}{U_b} \right)} \,[/math]

[math] R_\uparrow = \frac{-t}{C \cdot \ln \left( 1-\frac{U_{C}}{U_b} \right)} \,[/math] ; [math] R_\downarrow = \frac{-t}{C \cdot \ln \left( \frac{U_{C}}{U_b} \right)} \,[/math]

[math] t_\uparrow = -C \cdot R \cdot \ln \left( 1-\frac{U_{C}}{U_b} \right) \,[/math] ; [math] t_\downarrow = -C \cdot R \cdot \ln \left( \frac{U_{C}}{U_b} \right) \,[/math]

[math] U_{C\uparrow} = U_b \cdot \left( 1 - \operatorname{e}^{-\frac{t}{C \cdot R}} \right)\, [/math] ; [math] U_{C\downarrow} = U_b \cdot \operatorname{e}^{-\frac{t}{C \cdot R}}\, [/math]

[math] |I| = \frac{U_b}{R} \cdot \operatorname{e}^{-\frac{t}{C \cdot R}}\, [/math];

C L R

Soros

[math] C = \frac{-1}{2 \cdot \pi \cdot f \cdot \Im(Z)}\, [/math];

[math] L = \frac{ \Im(Z) }{2 \cdot \pi \cdot f}\, [/math];

[math] R = \Re(Z)\, [/math];


CLR [math] Z = R + \left( \frac{-1}{2 \cdot \pi \cdot f \cdot C} + 2 \cdot \pi \cdot f \cdot L \right) \cdot \mathrm{i}\, [/math];

CL- [math] Z = \left( \frac{-1}{2 \cdot \pi \cdot f \cdot C} + 2 \cdot \pi \cdot f \cdot L \right) \cdot \mathrm{i}\, [/math];

C-R [math] Z = R + \frac{-1}{2 \cdot \pi \cdot f \cdot C} \cdot \mathrm{i}\, [/math];

C-- [math] Z = \frac{-1}{2 \cdot \pi \cdot f \cdot C} \cdot \mathrm{i}\, [/math];

-LR [math] Z = R + 2 \cdot \pi \cdot f \cdot L \cdot \mathrm{i}\, [/math];

-L- [math] Z = 2 \cdot \pi \cdot f \cdot L \cdot \mathrm{i}\, [/math];

--R [math] Z = R\, [/math];

--- [math] Z = 0 \; \Omega\, [/math];

[math] Y = \frac{1}{Z}\, [/math];


Párhuzamos

[math] C = \frac{\Im(Y)}{2 \cdot \pi \cdot f}\, [/math];

[math] L = \frac{-1}{2 \cdot \pi \cdot f \cdot \Im(Y)}\, [/math];

[math] R = \frac{1}{\Re(Y)}\, [/math];

---

CLR [math] Y = \frac{1}{R} + \left( 2 \cdot \pi \cdot f \cdot C + \frac{-1}{ 2 \cdot \pi \cdot f \cdot L} \right) \cdot \mathrm{i} \,[/math] ;

CL- [math] Y = \left( 2 \cdot \pi \cdot f \cdot C + \frac{-1}{ 2 \cdot \pi \cdot f \cdot L} \right) \cdot \mathrm{i} \,[/math] ;

C-R [math] Y = \frac{1}{R} + 2 \cdot \pi \cdot f \cdot C \cdot \mathrm{i}\,[/math] ;

C-- [math] Y = 2 \cdot \pi \cdot f \cdot C \cdot \mathrm{i}\,[/math] ;

-LR [math] Y = \frac{1}{R} + \frac{-1}{ 2 \cdot \pi \cdot f \cdot L} \cdot \mathrm{i}\,[/math] ;

-L- [math] Y = \frac{-1}{ 2 \cdot \pi \cdot f \cdot L} \cdot \mathrm{i}\,[/math] ;

--R [math] Y = \frac{1}{R}\,[/math] ;

--- [math] Y = 0 \; \mathrm{S}\,[/math] ;

[math] Z = \frac{1}{Y}\,[/math] ;

:)

[math] p_g = \frac{g}{A}\, [/math] ;