Elektromos áram

Innen: HamWiki
Ugrás a navigációhoz Ugrás a kereséshez

Az elektromos áram (vagy régies, a műszaki életben használt nevén villamos áram) a töltéssel rendelkező részecskék áramlása. Lényegében minden rendezett töltésmozgást elektromos áramnak nevezünk, de mégis különbséget teszünk a fémekben az elektronok által létrehozott konduktív áram és a folyadékokban, gázokban szabad töltéshordozók (ionok) mozgása során létrejövő konvektív áram között.

Elektromos áramerősség

Az áram mennyiségi jellemzésére az áramerősség nevű fizikai SI-alapegységet használjuk. Definíció szerint áramerősségen az áramvezető keresztmetszetén időegység alatt áthaladó töltés nagyságát értjük. Jele: I, általában ill. egyenfeszültség estén vagy i váltakozófeszültség esetén, de az i jelentheti az egyenáramú összetevő leválasztása után maradó váltóáramú összetevőt is.

Mértékegysége az amper, melynek jele A, André-Marie Ampère francia fizikus tiszteletére.

A definíció alapján tehát a következő összefüggést írhatjuk fel a vezető keresztmetszetén Δt időtartam alatt átáramló töltések ΔQ nagysága és az elektromos áram erőssége között:

[math]I=\frac{\Delta Q}{\Delta t}[/math]

Megjegyzés: Ampere (1775-1836) elméletei alapul szolgáltak Faraday, Weber, Thomson és mások kutatásaihoz. A 19-ik század 70-es éveiben kiderült, hogy áram töltéshordozók nélkül is létezhet. Ha egy adó kimenete és az antenna közé kondenzátort kapcsolunk, -mint tudjuk- antennaáram akkor is folyik. Pedig a kondenzátor fegyverzetei között nincsenek szabad töltéshordozók. Lehet például egy vákuum szigetelésű kondenzátorra gondolni. Itt időegység alatt áthaladó töltésmennyiségről sem lehet beszélni. A nagyfrekvenciás áram mégis átfolyik a kondenzátoron. Az ilyen 'nemlétező' töltéshordozók révén kialakuló áramokat Maxwell eltolási áramoknak nevezte. Szerencsére Ohm törvénye ezekre is igaz. HA5KJ

Az áramerősség egységének definíciójáról

1 A az áram erőssége, ha két párhuzamos, egyenes, végtelen hosszúságú, elhanyagolhatóan kicsiny kör keresztmetszetű és vákuumban, egymástól 1 m távolságban lévő vezető között méterenként [math]2x10^{-7} [/math] N erőt hoz létre.

Kiszámítása

[math]I={Q \over t} = {[C] \over [s]} = [A][/math], ahol

  • Q a villamos töltés [coulomb],
  • t az idő [másodperc]

Az áram iránya

  • Technikai áramirány: a pozitív pólustól a negatív pólus irányába (a villamos szakmák hagyományosan ezt használják)
  • Fizikai áramirány: a negatív pólustól a pozitív pólus irányába (az elektronok valós haladási iránya)

A villamos áram hatásai

Hőhatás

Joule törvénye kimondja, hogy az ellenálláson átfolyó áram villamos teljesítményének megfelelő hőt termel. A fejlődő hő a Joule-hő.

Vegyi hatás

  • folyadékok vezetése:
    • elektrolízis,Faraday törvénye
    • galvánelemek
    • akkumulátorok
    • tüzelőanyag-cellák
    • korrózió

Mágneses hatás

  • villamos tér

Fényhatás

  • fényforrások (izzólámpák, fénycsővek)
  • villámlás

Élettani (fizológiai) hatás

Az emberi test vezeti a villamos áramot; ellenállása általában 200-3000 Ω. A szervezeten áthaladó áram károsodást,sőt halált is okozhat. A károsodás mértékét az áram erőssége és típusa, a hatás ideje, és az áram testen belüli útja határozza meg.

Források

  • Molodványi Gyula: Az SI mértékegységekről ISBN 1022560