Szerkesztő:Gg630504/Képletek
Tartalomjegyzék
- 1 0
- 2 A_IJ
- 3 B_DfQ
- 4 BDfQR_CLR
- 5 Cf_LR ( elsőfokú szűrő )
- 6 CL_fR ( elsőfokú szűrő )
- 7 CR_fL ( elsőfokú szűrő )
- 8 CYZ_fL
- 9 DQ_Bf
- 10 DQRp_CfRs
- 11 DQRp_fLRs
- 12 DQRs_CfRp
- 13 DQRs_fLRp
- 14 f_BDQ
- 15 fL_CR ( elsőfokú szűrő )
- 16 fR_CL ( elsőfokú szűrő )
- 17 h_Rbt
- 18 I_AJ
- 19 J_AI
- 20 LR_Cf ( elsőfokú szűrő )
- 21 l_RRl
- 22 l_tv
- 23 Rb_ht
- 24 Rl_lR
- 25 R_lRl
- 26 t_hRb
- 27 t_lv
- 28 v_lt
0
[math] = \, [/math] ●
A_IJ
[math] A = \frac{I}{J}\, [/math] ● [math] d = \sqrt{\frac{4 \cdot I}{\pi \cdot J}}\, [/math] ●
[math] A = I \cdot J^{-1}\, [/math] ● [math] d = \sqrt{\frac{4 \cdot I \cdot J^{-1}}{\pi}}\, [/math] ●
B_DfQ
[math] B = \dfrac{f}{Q}\, [/math] ● [math] B = D \cdot f\, [/math] ●
BDfQR_CLR
[math] D = 0\, [/math] ● [math] D = \dfrac{1}{R_p} \cdot \sqrt{ \dfrac{L}{C} }\, [/math] ● [math] D = R_s \cdot \sqrt{ \dfrac{C}{L} }\, [/math] ● [math] D = \dfrac{1}{R_p} \cdot \sqrt{ \dfrac{L}{C} } + R_s \cdot \sqrt{ \dfrac{C}{L} }\, [/math] ● [math] Q = \dfrac{1}{D}\, [/math] ● [math] f = \dfrac{1}{2 \cdot \pi \cdot f \cdot \sqrt{C \cdot L }} \cdot \sqrt{1 - \dfrac{1}{4 \cdot Q^2}}\, [/math] ● [math] B = D \cdot f\, [/math] ● [math] R_s = 0 \ \Omega \, [/math] ● [math] R_p = \dfrac{1}{D} \cdot \sqrt{ \dfrac{L}{C} }\, [/math] ● [math] R_p = \infin \ \Omega \, [/math] ● [math] R_s = D \cdot \sqrt{ \dfrac{L}{C} }\, [/math] ● [math] Z_0 = \sqrt{ \dfrac{L}{C} }\, [/math] ●
Cf_LR ( elsőfokú szűrő )
[math] C = \dfrac{L}{R^2}\, [/math] ● [math] f_v = \dfrac{R}{2 \cdot \pi \cdot L}\, [/math] ●
CL_fR ( elsőfokú szűrő )
[math] C = \dfrac{1}{2 \cdot \pi \cdot f_v \cdot R}\, [/math] ● [math] L = \dfrac{R}{2 \cdot \pi \cdot f_v}\, [/math] ●
CR_fL ( elsőfokú szűrő )
[math] C = \dfrac{1}{4 \cdot \pi^2 \cdot {f_v}^2 \cdot L}\, [/math] ● [math] R = 2 \cdot \pi \cdot f_v \cdot L\, [/math] ●
CYZ_fL
[math] C = \dfrac{1}{ \left( 2 \cdot \pi \cdot f \right)^2 \cdot L}\, [/math] ● [math] Y_L = \dfrac{-1}{ 2 \cdot \pi \cdot f \cdot L} \cdot \mathrm{i} = -\sqrt{\dfrac{C}{L}} \cdot \mathrm{i}\, [/math] ● [math] Z_L = 2 \cdot \pi \cdot f \cdot L\cdot \mathrm{i} = \sqrt{\dfrac{L}{C}} \cdot \mathrm{i} \, [/math] ●
DQ_Bf
[math] D = \dfrac{B}{f}\, [/math] ● [math] Q = \dfrac{f}{B}\, [/math] ●
DQRp_CfRs
[math] D = \tan \left( \delta \right) = 2 \cdot \pi \cdot f \cdot C \cdot R_s\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = \dfrac{1}{2 \cdot \pi \cdot f \cdot C \cdot R_s}\, [/math] ● [math] R_p = \dfrac{1}{{\left(2 \cdot \pi \cdot f \cdot C\right)}^2 \cdot R_s }\, [/math] ●
DQRp_fLRs
[math] D = \tan \left( \delta \right) = \dfrac{R_s}{2 \cdot \pi \cdot f \cdot L}\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = \dfrac{2 \cdot \pi \cdot f \cdot L}{R_s}\, [/math] ● [math] R_p = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2 }{R_s }\, [/math] ●
DQRs_CfRp
[math] D = \tan \left( \delta \right) = \dfrac{1}{2 \cdot \pi \cdot f \cdot C \cdot R_p }\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = 2 \cdot \pi \cdot f \cdot C \cdot R_p\, [/math] ● [math] R_s = \dfrac{1}{{\left(2 \cdot \pi \cdot f \cdot C\right)}^2 \cdot R_p }\, [/math] ●
DQRs_fLRp
[math] D = \tan \left( \delta \right) = \dfrac{2 \cdot \pi \cdot f \cdot L}{ R_p }\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = \dfrac{R_p}{2 \cdot \pi \cdot f \cdot L }\, [/math] ● [math] R_s = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2}{R_p }\, [/math] ●
f_BDQ
[math] f = \dfrac{B}{D}\, [/math] ● [math] f = B \cdot Q\, [/math] ●
fL_CR ( elsőfokú szűrő )
[math] f_v = \dfrac{1}{2 \cdot \pi \cdot\ C \cdot R}\, [/math] ● [math] L = C \cdot R^2\, [/math] ●
fR_CL ( elsőfokú szűrő )
[math] f_v = \dfrac{1}{2 \cdot \pi \cdot\ \sqrt{C \cdot L}}\, [/math] ● [math] R = \sqrt\frac{L}{C}\, [/math] ●
h_Rbt
[math] h = R_b \cdot t\, [/math] ●
I_AJ
[math] I = A \cdot J\, [/math] ● [math] I = \frac{\pi \cdot d^2 \cdot J}{4}\, [/math] ● [math] I = \pi \cdot r^2 \cdot J\, [/math] ●
[math] I = \frac{A}{J^{-1}}\, [/math] ● [math] I = \frac{\pi \cdot d^2}{4 \cdot J^{-1}}\, [/math] ● [math] I = \frac{\pi \cdot r^2}{J^{-1}}\, [/math] ●
J_AI
[math] J = \frac{I}{A}\, [/math] ● [math] J = \frac{4 \cdot I}{\pi \cdot d^2}\, [/math] ● [math] J = \frac{I}{\pi \cdot r^2}\, [/math] ●
[math] J^{-1} = \frac{A}{I}\, [/math] ● [math] J^{-1} = \frac{\pi \cdot d^2}{4 \cdot I}\, [/math] ● [math] J^{-1} = \frac{\pi \cdot r^2}{I}\, [/math] ●
LR_Cf ( elsőfokú szűrő )
[math] L = \frac{1}{4 \cdot \pi^2 \cdot C \cdot {f_v}^2}\, [/math] ● [math] R = \frac{1}{2 \cdot \pi \cdot C \cdot f_v}\, [/math] ●
l_RRl
[math] l = \frac{R}{R'} = \frac{A \cdot R}{\rho}\, [/math] ●
l_tv
[math] l = t \cdot v\, [/math] ●
Rb_ht
[math] R_b = \dfrac{h}{t}\, [/math] ●
Rl_lR
[math] R' = \frac{R}{l} = \frac{\rho}{A}\, [/math] ●
R_lRl
[math] R = l \cdot R' = \frac{l \cdot \rho}{A}\, [/math] ●
t_hRb
[math] t = \dfrac{h}{R_b}\, [/math] ●
t_lv
[math] t = \dfrac{l}{v}\, [/math] ●
v_lt
[math] v = \dfrac{l}{t}\, [/math] ●