Szerkesztő:Gg630504/Képletek

Innen: HamWiki
< Szerkesztő:Gg630504
A lap korábbi változatát látod, amilyen Gg630504 (vitalap | közreműködések) 2012. március 19., 23:39-kor történt szerkesztése után volt. (α ● C ● T)
Ugrás a navigációhoz Ugrás a kereséshez

Számoló

0

[math] = \, [/math]

A_IJ

[math] A = \dfrac{I}{J}\, [/math][math] d = \sqrt{\dfrac{4 \cdot I}{\pi \cdot J}}\, [/math]

[math] A = I \cdot J^{-1}\, [/math][math] d = \sqrt{\dfrac{4 \cdot I \cdot J^{-1}}{\pi}}\, [/math]

AdeltaGR_Aflmurho

[math] d = 2 \cdot \sqrt \dfrac{A}{\pi}\, [/math][math] d = 2 \cdot r\, [/math]

[math] \delta = \sqrt \dfrac{\rho}{\pi \cdot f \cdot \mu_r \cdot \mu_0}\, [/math][math] \delta = \sqrt \dfrac{1}{\pi \cdot f \cdot \gamma \cdot \mu_r \cdot \mu_0}\, [/math]

[math] A_{DC} = A\, [/math][math] A_{DC} = \dfrac{\pi}{4} d^2\, [/math][math] A_{DC} = \pi \cdot r^2\, [/math][math] A_{DC} = a \cdot b\, [/math]

[math] A_{AC} = \pi \cdot \delta \cdot( d - \delta )\, [/math][math] A_{AC} = 2 \cdot \delta \cdot ( a + b - 2 \cdot \delta )\, [/math]

[math] G_{DC} = \dfrac{A_{DC} \cdot \gamma}{l}\, [/math][math] G_{DC} = \dfrac{A_{DC} }{l\cdot \rho}\, [/math][math] G_{AC} = \dfrac{A_{AC} \cdot \gamma}{l}\, [/math][math] G_{AC} = \dfrac{A_{AC} }{l\cdot \rho}\, [/math]


[math] R_{DC} = \dfrac{l}{A_{DC} \cdot \gamma}\, [/math][math] R_{DC} = \dfrac{l\cdot \rho}{A_{DC} }\, [/math][math] R_{AC} = \dfrac{l}{A_{AC} \cdot \gamma}\, [/math][math] R_{AC} = \dfrac{l\cdot \rho}{A_{AC} }\, [/math]

[math] A_{DC/AC}= G_{DC/AC}= R_{AC/DC} = \dfrac{A_{DC}}{A_{AC}}\, [/math]

α ● C ● T

[math] \alpha = \dfrac{\dfrac{C_1}{C_0}-1}{T_1 - T_0} \, [/math][math] C_1 = C_0 \cdot( 1 + \alpha \cdot( T_1 - T_0 ) ) \, [/math][math] T_1 = T_0 + \dfrac{\dfrac{C_1}{C_0}-1}{ \alpha} \, [/math]

α ● GR ● T

[math] G_1 = \dfrac{1}{R_1} \, [/math][math] R_1 = R_0 \cdot( 1 + \alpha \cdot( T_1 - T_0 ) ) \, [/math]

[math] G_1 = \dfrac{G_0}{ 1 + \alpha \cdot( T_1 - T_0 )} \, [/math][math] R_1 = \dfrac{1}{G_1} \, [/math]

[math] T_1 = T_0 + \dfrac{\dfrac{G_0}{G_1}-1}{ \alpha} \, [/math][math] T_1 = T_0 + \dfrac{G_0 \cdot R_1 - 1}{ \alpha} \, [/math][math] T_1 = T_0 + \dfrac{\dfrac{1}{R_0 \cdot G_1}-1}{ \alpha} \, [/math][math] T_1 = T_0 + \dfrac{\dfrac{R_1}{R_0}-1}{ \alpha} \, [/math]

[math] \alpha = \dfrac{\dfrac{G_0}{G_1}-1}{T_1 - T_0} \, [/math][math] \alpha = \dfrac{G_0 \cdot R_1 - 1}{T_1 - T_0} \, [/math][math] \alpha = \dfrac{\dfrac{1}{R_0 \cdot G_1}-1}{T_1 - T_0} \, [/math][math] \alpha = \dfrac{\dfrac{R_1}{R_0}-1}{T_1 - T_0} \, [/math]

B_DfQ

[math] B = \dfrac{f}{Q}\, [/math][math] B = D \cdot f\, [/math]

BDfQR_CLR

[math] D = 0\, [/math][math] D = \dfrac{1}{R_p} \cdot \sqrt{ \dfrac{L}{C} }\, [/math][math] D = R_s \cdot \sqrt{ \dfrac{C}{L} }\, [/math][math] D = \dfrac{1}{R_p} \cdot \sqrt{ \dfrac{L}{C} } + R_s \cdot \sqrt{ \dfrac{C}{L} }\, [/math][math] Q = \dfrac{1}{D}\, [/math][math] f = \dfrac{1}{2 \cdot \pi \cdot f \cdot \sqrt{C \cdot L }} \cdot \sqrt{1 - \dfrac{1}{4 \cdot Q^2}}\, [/math][math] B = D \cdot f\, [/math][math] R_s = 0 \ \Omega \, [/math][math] R_p = \dfrac{1}{D} \cdot \sqrt{ \dfrac{L}{C} }\, [/math][math] R_p = \infin \ \Omega \, [/math][math] R_s = D \cdot \sqrt{ \dfrac{L}{C} }\, [/math][math] Z_0 = \sqrt{ \dfrac{L}{C} }\, [/math]

CE_IQUt

[math] C = \dfrac{Q}{U}\, [/math][math] E = \dfrac{Q \cdot U}{2}\, [/math][math] C = \dfrac{I \cdot t}{U}\, [/math][math] E = \dfrac{I \cdot t \cdot U}{2}\, [/math]

Cf_LR ( elsőfokú szűrő )

[math] C = \dfrac{L}{R^2}\, [/math][math] f_v = \dfrac{R}{2 \cdot \pi \cdot L}\, [/math]

CL_fR ( elsőfokú szűrő )

[math] C = \dfrac{1}{2 \cdot \pi \cdot f_v \cdot R}\, [/math][math] L = \dfrac{R}{2 \cdot \pi \cdot f_v}\, [/math]

cos φ

[math] \cos \phi = \dfrac{R}{|Z|}\, [/math]

CR_fL ( elsőfokú szűrő )

[math] C = \dfrac{1}{4 \cdot \pi^2 \cdot {f_v}^2 \cdot L}\, [/math][math] R = 2 \cdot \pi \cdot f_v \cdot L\, [/math]

CU_EIQt

[math] C = \dfrac{Q^2}{2 \cdot E}\, [/math][math] U = \dfrac{2 \cdot E}{Q}\, [/math][math] C = \dfrac{\left(I \cdot t\right)^2}{2 \cdot E}\, [/math][math] U = \dfrac{2 \cdot E}{I \cdot t}\, [/math]

CYZ_fL

[math] C = \dfrac{1}{ \left( 2 \cdot \pi \cdot f \right)^2 \cdot L}\, [/math][math] Y_L = \dfrac{-1}{ 2 \cdot \pi \cdot f \cdot L} \cdot \mathrm{i} = -\sqrt{\dfrac{C}{L}} \cdot \mathrm{i}\, [/math][math] Z_L = 2 \cdot \pi \cdot f \cdot L\cdot \mathrm{i} = \sqrt{\dfrac{L}{C}} \cdot \mathrm{i} \, [/math]

DQ_Bf

[math] D = \dfrac{B}{f}\, [/math][math] Q = \dfrac{f}{B}\, [/math]

DQRp_CfRs

[math] D = \tan \left( \delta \right) = 2 \cdot \pi \cdot f \cdot C \cdot R_s\, [/math][math] \delta = \mathrm{atan} \left( D \right)\, [/math][math] Q = \dfrac{1}{D} = \dfrac{1}{2 \cdot \pi \cdot f \cdot C \cdot R_s}\, [/math][math] R_p = \dfrac{1}{{\left(2 \cdot \pi \cdot f \cdot C\right)}^2 \cdot R_s }\, [/math]

DQRp_fLRs

[math] D = \tan \left( \delta \right) = \dfrac{R_s}{2 \cdot \pi \cdot f \cdot L}\, [/math][math] \delta = \mathrm{atan} \left( D \right)\, [/math][math] Q = \dfrac{1}{D} = \dfrac{2 \cdot \pi \cdot f \cdot L}{R_s}\, [/math][math] R_p = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2 }{R_s }\, [/math]

DQRs_CfRp

[math] D = \tan \left( \delta \right) = \dfrac{1}{2 \cdot \pi \cdot f \cdot C \cdot R_p }\, [/math][math] \delta = \mathrm{atan} \left( D \right)\, [/math][math] Q = \dfrac{1}{D} = 2 \cdot \pi \cdot f \cdot C \cdot R_p\, [/math][math] R_s = \dfrac{1}{{\left(2 \cdot \pi \cdot f \cdot C\right)}^2 \cdot R_p }\, [/math]

DQRs_fLRp

[math] D = \tan \left( \delta \right) = \dfrac{2 \cdot \pi \cdot f \cdot L}{ R_p }\, [/math][math] \delta = \mathrm{atan} \left( D \right)\, [/math][math] Q = \dfrac{1}{D} = \dfrac{R_p}{2 \cdot \pi \cdot f \cdot L }\, [/math][math] R_s = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2}{R_p }\, [/math]

EU_CIQt

[math] E = \dfrac{Q^2}{2 \cdot C}\, [/math][math] U = \dfrac{Q}{C}\, [/math][math] E = \dfrac{\left(I \cdot t \right)^2}{2 \cdot C}\, [/math][math] U = \dfrac{I \cdot t}{C}\, [/math]

f_BDQ

[math] f = \dfrac{B}{D}\, [/math][math] f = B \cdot Q\, [/math]

fL_CR ( elsőfokú szűrő )

[math] f_v = \dfrac{1}{2 \cdot \pi \cdot\ C \cdot R}\, [/math][math] L = C \cdot R^2\, [/math]

fR_CL ( elsőfokú szűrő )

[math] f_v = \dfrac{1}{2 \cdot \pi \cdot\ \sqrt{C \cdot L}}\, [/math][math] R = \sqrt\dfrac{L}{C}\, [/math]

G_gm

[math] G = g \cdot m\, [/math]

Gm_grhoV

[math] V = \dfrac{\pi \cdot d^3}{6}\, [/math][math] V = \dfrac{4 \cdot \pi \cdot r^3}{3}\, [/math]

[math] V = A \cdot l\, [/math][math] V = \dfrac{\pi \cdot d^2 \cdot l}{4}\, [/math][math] V = \pi \cdot r^2 \cdot l\, [/math]

[math] V = a \cdot b \cdot c\, [/math]

[math] m = \rho \cdot V\, [/math]

[math] G = g \cdot m\, [/math]

h_Rbt

[math] h = R_b \cdot t\, [/math]

I_AJ

[math] I = A \cdot J\, [/math][math] I = \dfrac{\pi \cdot d^2 \cdot J}{4}\, [/math][math] I = \pi \cdot r^2 \cdot J\, [/math]

[math] I = \dfrac{A}{J^{-1}}\, [/math][math] I = \dfrac{\pi \cdot d^2}{4 \cdot J^{-1}}\, [/math][math] I = \dfrac{\pi \cdot r^2}{J^{-1}}\, [/math]

J_AI

[math] J = \dfrac{I}{A}\, [/math][math] J = \dfrac{4 \cdot I}{\pi \cdot d^2}\, [/math][math] J = \dfrac{I}{\pi \cdot r^2}\, [/math]

[math] J^{-1} = \dfrac{A}{I}\, [/math][math] J^{-1} = \dfrac{\pi \cdot d^2}{4 \cdot I}\, [/math][math] J^{-1} = \dfrac{\pi \cdot r^2}{I}\, [/math]

LR_Cf ( elsőfokú szűrő )

[math] L = \dfrac{1}{4 \cdot \pi^2 \cdot C \cdot {f_v}^2}\, [/math][math] R = \dfrac{1}{2 \cdot \pi \cdot C \cdot f_v}\, [/math]

l_RRl

[math] l = \dfrac{R}{R'} = \dfrac{A \cdot R}{\rho}\, [/math]

l_tv

[math] l = t \cdot v\, [/math]

m ● ρ ● V

[math] m = \rho \cdot V\, [/math][math] \rho = \dfrac{m}{V}\, [/math][math] V = \dfrac{m}{\rho}\, [/math]

P_tW

[math] P = \dfrac{W}{t}\, [/math]

Rb_ht

[math] R_b = \dfrac{h}{t}\, [/math]

Rl_lR

[math] R' = \dfrac{R}{l} = \dfrac{\rho}{A}\, [/math]

R_lRl

[math] R = l \cdot R' = \dfrac{l \cdot \rho}{A}\, [/math]

t_hRb

[math] t = \dfrac{h}{R_b}\, [/math]

t_IPUW

[math] t = \dfrac{W}{P}\, [/math][math] t = \dfrac{W}{I \cdot U}\, [/math]

t_lv

[math] t = \dfrac{l}{v}\, [/math]

V_abcdrl

[math] V = \dfrac{\pi \cdot d^3}{6}\, [/math][math] V = \dfrac{4 \cdot \pi \cdot r^3}{3}\, [/math]

[math] V = A \cdot l\, [/math][math] V = \dfrac{\pi \cdot d^2 \cdot l}{4}\, [/math][math] V = \pi \cdot r^2 \cdot l\, [/math]

[math] V = a \cdot b \cdot c\, [/math]

v_lt

[math] v = \dfrac{l}{t}\, [/math]

W_IPtU

[math] W = P \cdot t\, [/math][math] W = I \cdot U \cdot t\, [/math]