Szerkesztő:Gg630504/Képletek
Régebbi/többi képlet a Szerkesztővita:Gg630504 oldalon.
Tartalomjegyzék
- 1 0
- 2 A_IJ
- 3 B_DfQ
- 4 BDfQR_CLR
- 5 CE_IQUt
- 6 Cf_LR ( elsőfokú szűrő )
- 7 CL_fR ( elsőfokú szűrő )
- 8 CR_fL ( elsőfokú szűrő )
- 9 CU_EIQt
- 10 CYZ_fL
- 11 DQ_Bf
- 12 DQRp_CfRs
- 13 DQRp_fLRs
- 14 DQRs_CfRp
- 15 DQRs_fLRp
- 16 EU_CIQt
- 17 f_BDQ
- 18 fL_CR ( elsőfokú szűrő )
- 19 fR_CL ( elsőfokú szűrő )
- 20 h_Rbt
- 21 I_AJ
- 22 J_AI
- 23 LR_Cf ( elsőfokú szűrő )
- 24 l_RRl
- 25 l_tv
- 26 Rb_ht
- 27 Rl_lR
- 28 R_lRl
- 29 t_hRb
- 30 t_IPUW
- 31 t_lv
- 32 v_lt
0
[math] = \, [/math] ●
A_IJ
[math] A = \frac{I}{J}\, [/math] ● [math] d = \sqrt{\frac{4 \cdot I}{\pi \cdot J}}\, [/math] ●
[math] A = I \cdot J^{-1}\, [/math] ● [math] d = \sqrt{\frac{4 \cdot I \cdot J^{-1}}{\pi}}\, [/math] ●
B_DfQ
[math] B = \dfrac{f}{Q}\, [/math] ● [math] B = D \cdot f\, [/math] ●
BDfQR_CLR
[math] D = 0\, [/math] ● [math] D = \dfrac{1}{R_p} \cdot \sqrt{ \dfrac{L}{C} }\, [/math] ● [math] D = R_s \cdot \sqrt{ \dfrac{C}{L} }\, [/math] ● [math] D = \dfrac{1}{R_p} \cdot \sqrt{ \dfrac{L}{C} } + R_s \cdot \sqrt{ \dfrac{C}{L} }\, [/math] ● [math] Q = \dfrac{1}{D}\, [/math] ● [math] f = \dfrac{1}{2 \cdot \pi \cdot f \cdot \sqrt{C \cdot L }} \cdot \sqrt{1 - \dfrac{1}{4 \cdot Q^2}}\, [/math] ● [math] B = D \cdot f\, [/math] ● [math] R_s = 0 \ \Omega \, [/math] ● [math] R_p = \dfrac{1}{D} \cdot \sqrt{ \dfrac{L}{C} }\, [/math] ● [math] R_p = \infin \ \Omega \, [/math] ● [math] R_s = D \cdot \sqrt{ \dfrac{L}{C} }\, [/math] ● [math] Z_0 = \sqrt{ \dfrac{L}{C} }\, [/math] ●
CE_IQUt
[math] C = \frac{Q}{U}\, [/math] ● [math] E = \frac{Q \cdot U}{2}\, [/math] ● [math] C = \frac{I \cdot t}{U}\, [/math] ● [math] E = \frac{I \cdot t \cdot U}{2}\, [/math] ●
Cf_LR ( elsőfokú szűrő )
[math] C = \dfrac{L}{R^2}\, [/math] ● [math] f_v = \dfrac{R}{2 \cdot \pi \cdot L}\, [/math] ●
CL_fR ( elsőfokú szűrő )
[math] C = \dfrac{1}{2 \cdot \pi \cdot f_v \cdot R}\, [/math] ● [math] L = \dfrac{R}{2 \cdot \pi \cdot f_v}\, [/math] ●
CR_fL ( elsőfokú szűrő )
[math] C = \dfrac{1}{4 \cdot \pi^2 \cdot {f_v}^2 \cdot L}\, [/math] ● [math] R = 2 \cdot \pi \cdot f_v \cdot L\, [/math] ●
CU_EIQt
[math] C = \frac{Q^2}{2 \cdot E}\, [/math] ● [math] U = \frac{2 \cdot E}{Q}\, [/math] ● [math] C = \frac{\left(I \cdot t\right)^2}{2 \cdot E}\, [/math] ● [math] U = \frac{2 \cdot E}{I \cdot t}\, [/math] ●
CYZ_fL
[math] C = \dfrac{1}{ \left( 2 \cdot \pi \cdot f \right)^2 \cdot L}\, [/math] ● [math] Y_L = \dfrac{-1}{ 2 \cdot \pi \cdot f \cdot L} \cdot \mathrm{i} = -\sqrt{\dfrac{C}{L}} \cdot \mathrm{i}\, [/math] ● [math] Z_L = 2 \cdot \pi \cdot f \cdot L\cdot \mathrm{i} = \sqrt{\dfrac{L}{C}} \cdot \mathrm{i} \, [/math] ●
DQ_Bf
[math] D = \dfrac{B}{f}\, [/math] ● [math] Q = \dfrac{f}{B}\, [/math] ●
DQRp_CfRs
[math] D = \tan \left( \delta \right) = 2 \cdot \pi \cdot f \cdot C \cdot R_s\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = \dfrac{1}{2 \cdot \pi \cdot f \cdot C \cdot R_s}\, [/math] ● [math] R_p = \dfrac{1}{{\left(2 \cdot \pi \cdot f \cdot C\right)}^2 \cdot R_s }\, [/math] ●
DQRp_fLRs
[math] D = \tan \left( \delta \right) = \dfrac{R_s}{2 \cdot \pi \cdot f \cdot L}\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = \dfrac{2 \cdot \pi \cdot f \cdot L}{R_s}\, [/math] ● [math] R_p = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2 }{R_s }\, [/math] ●
DQRs_CfRp
[math] D = \tan \left( \delta \right) = \dfrac{1}{2 \cdot \pi \cdot f \cdot C \cdot R_p }\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = 2 \cdot \pi \cdot f \cdot C \cdot R_p\, [/math] ● [math] R_s = \dfrac{1}{{\left(2 \cdot \pi \cdot f \cdot C\right)}^2 \cdot R_p }\, [/math] ●
DQRs_fLRp
[math] D = \tan \left( \delta \right) = \dfrac{2 \cdot \pi \cdot f \cdot L}{ R_p }\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = \dfrac{R_p}{2 \cdot \pi \cdot f \cdot L }\, [/math] ● [math] R_s = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2}{R_p }\, [/math] ●
EU_CIQt
[math] E = \frac{Q^2}{2 \cdot C}\, [/math] ● [math] U = \frac{Q}{C}\, [/math] ● [math] E = \frac{\left(I \cdot t \right)^2}{2 \cdot C}\, [/math] ● [math] U = \frac{I \cdot t}{C}\, [/math] ●
f_BDQ
[math] f = \dfrac{B}{D}\, [/math] ● [math] f = B \cdot Q\, [/math] ●
fL_CR ( elsőfokú szűrő )
[math] f_v = \dfrac{1}{2 \cdot \pi \cdot\ C \cdot R}\, [/math] ● [math] L = C \cdot R^2\, [/math] ●
fR_CL ( elsőfokú szűrő )
[math] f_v = \dfrac{1}{2 \cdot \pi \cdot\ \sqrt{C \cdot L}}\, [/math] ● [math] R = \sqrt\frac{L}{C}\, [/math] ●
h_Rbt
[math] h = R_b \cdot t\, [/math] ●
I_AJ
[math] I = A \cdot J\, [/math] ● [math] I = \frac{\pi \cdot d^2 \cdot J}{4}\, [/math] ● [math] I = \pi \cdot r^2 \cdot J\, [/math] ●
[math] I = \frac{A}{J^{-1}}\, [/math] ● [math] I = \frac{\pi \cdot d^2}{4 \cdot J^{-1}}\, [/math] ● [math] I = \frac{\pi \cdot r^2}{J^{-1}}\, [/math] ●
J_AI
[math] J = \frac{I}{A}\, [/math] ● [math] J = \frac{4 \cdot I}{\pi \cdot d^2}\, [/math] ● [math] J = \frac{I}{\pi \cdot r^2}\, [/math] ●
[math] J^{-1} = \frac{A}{I}\, [/math] ● [math] J^{-1} = \frac{\pi \cdot d^2}{4 \cdot I}\, [/math] ● [math] J^{-1} = \frac{\pi \cdot r^2}{I}\, [/math] ●
LR_Cf ( elsőfokú szűrő )
[math] L = \frac{1}{4 \cdot \pi^2 \cdot C \cdot {f_v}^2}\, [/math] ● [math] R = \frac{1}{2 \cdot \pi \cdot C \cdot f_v}\, [/math] ●
l_RRl
[math] l = \frac{R}{R'} = \frac{A \cdot R}{\rho}\, [/math] ●
l_tv
[math] l = t \cdot v\, [/math] ●
Rb_ht
[math] R_b = \dfrac{h}{t}\, [/math] ●
Rl_lR
[math] R' = \frac{R}{l} = \frac{\rho}{A}\, [/math] ●
R_lRl
[math] R = l \cdot R' = \frac{l \cdot \rho}{A}\, [/math] ●
t_hRb
[math] t = \dfrac{h}{R_b}\, [/math] ●
t_IPUW
[math] t = \dfrac{W}{P}\, [/math] ● [math] t = \dfrac{W}{I \cdot U}\, [/math] ●
t_lv
[math] t = \dfrac{l}{v}\, [/math] ●
v_lt
[math] v = \dfrac{l}{t}\, [/math] ●