„Szerkesztő:Gg630504/Képletek” változatai közötti eltérés
a (→Rövid bevezető: formázás) |
a (→Rövid bevezető) |
||
33. sor: | 33. sor: | ||
* bev_P_tW ● <math> P = \dfrac{W}{t}\, </math> | * bev_P_tW ● <math> P = \dfrac{W}{t}\, </math> | ||
* bev_Q_It ● <math> Q = I \cdot t\, </math> | * bev_Q_It ● <math> Q = I \cdot t\, </math> | ||
− | * bev_R_auto ● <math> R = \dfrac{ | + | * bev_R_auto ● <math> R = \dfrac{U}{I} = \dfrac{12\ volt}{1,75\ amper} = 6,857\ ohm\, </math> |
* bev_R_IU ● <math> R = \dfrac{U}{I}\, </math> | * bev_R_IU ● <math> R = \dfrac{U}{I}\, </math> | ||
* bev_T_50_Hz ● <math> T = \dfrac{1}{f} = \dfrac{1}{50\ Hz} = 0,02\ s\, </math> | * bev_T_50_Hz ● <math> T = \dfrac{1}{f} = \dfrac{1}{50\ Hz} = 0,02\ s\, </math> |
A lap 2012. július 7., 23:47-kori változata
Tartalomjegyzék
- 1 0
- 2 ABC
- 3 Rövid bevezető
- 4 AdeltaGR_Aflmurho
- 5 α ● C ● T
- 6 α ● GR ● T
- 7 B_DfQ
- 8 BDfQR_CLR
- 9 CE_IQUt
- 10 Cf_LR ( elsőfokú szűrő )
- 11 CL_fR ( elsőfokú szűrő )
- 12 cos φ
- 13 CR_fL ( elsőfokú szűrő )
- 14 CU_EIQt
- 15 CYZ_fL
- 16 DQ_Bf
- 17 DQRp_CfRs
- 18 DQRp_fLRs
- 19 DQRs_CfRp
- 20 DQRs_fLRp
- 21 E ● l ● U
- 22 EU_CIQt
- 23 f_BDQ
- 24 fL_CR ( elsőfokú szűrő )
- 25 fR_CL ( elsőfokú szűrő )
- 26 G_gm
- 27 Gm_grhoV
- 28 h_Rbt
- 29 I_AJ
- 30 J_AI
- 31 LR_Cf ( elsőfokú szűrő )
- 32 l_RRl
- 33 l_tv
- 34 m ● ρ ● V
- 35 P_tW
- 36 Rb_ht
- 37 Rl_lR
- 38 R_lRl
- 39 t_hRb
- 40 t_IPUW
- 41 t_lv
- 42 V_abcdrl
- 43 v_lt
- 44 W_IPtU
0
[math] = \, [/math] ●
ABC
- A_IJ_A_J1 ● [math] A = I \cdot J^{-1}\, [/math]
- A_IJ_A_J1 ● [math] d = \sqrt{\dfrac{4 \cdot I \cdot J^{-1}}{\pi}}\, [/math]
- A_IJ_A_J ● [math] A = \dfrac{I}{J}\, [/math]
- A_IJ_d_J ● [math] d = \sqrt{\dfrac{4 \cdot I}{\pi \cdot J}}\, [/math]
- Cdelta_star_C01 ● [math] C_{01} = \dfrac{C_{0} \cdot C_{1}}{C_{0} + C_{1} + C_{2}}\, [/math]
- Cdelta_star_C02 ● [math] C_{02} = \dfrac{C_{0} \cdot C_{2}}{C_{0} + C_{1} + C_{2}}\, [/math]
- Cdelta_star_C12 ● [math] C_{12} = \dfrac{C_{1} \cdot C_{2}}{C_{0} + C_{1} + C_{2}}\, [/math]
- Cstar_delta_C0 ● [math] C_{0} = \dfrac{C_{01} \cdot C_{02}}{C_{12}} + C_{01} + C_{02}\, [/math]
- Cstar_delta_C1 ● [math] C_{1} = \dfrac{C_{01} \cdot C_{12}}{C_{02}} + C_{01} + C_{12}\, [/math]
- Cstar_delta_C2 ● [math] C_{2} = \dfrac{C_{02} \cdot C_{12}}{C_{01}} + C_{02} + C_{12}\, [/math]
Rövid bevezető
rovid_bevezeto_az_elektronikaba.html
- bev_f_T ● [math] f = \dfrac{1}{T}\, [/math]
- bev_G_auto ● [math] G = \dfrac{I}{U} = \dfrac{1,75\ amper}{12\ volt} = 0,1458\ siemens\, [/math]
- bev_G_IU ● [math] G = \dfrac{I}{U}\, [/math]
- bev_I_250_mA ● [math] I = \dfrac{Q}{t} = \dfrac{9000\ coulomb}{36000\ s} = 0,25\ amper\, [/math]
- bev_I_Qt ● [math] I = \dfrac{Q}{t}\, [/math]
- bev_P_auto ● [math] P = I \cdot U = 1,75\ amper \cdot 12\ volt = 21\ watt\, [/math]
- bev_P_IU ● [math] P = \dfrac{W}{t} = \dfrac{Q \cdot U}{t} = \dfrac{I \cdot t \cdot U}{t} = I \cdot U\, [/math]
- bev_P_tW ● [math] P = \dfrac{W}{t}\, [/math]
- bev_Q_It ● [math] Q = I \cdot t\, [/math]
- bev_R_auto ● [math] R = \dfrac{U}{I} = \dfrac{12\ volt}{1,75\ amper} = 6,857\ ohm\, [/math]
- bev_R_IU ● [math] R = \dfrac{U}{I}\, [/math]
- bev_T_50_Hz ● [math] T = \dfrac{1}{f} = \dfrac{1}{50\ Hz} = 0,02\ s\, [/math]
- bev_T_f ● [math] T = \dfrac{1}{f}\, [/math]
- bev_U_QW ● [math] U = \dfrac{W}{Q}\, [/math]
- bev_W_QU ● [math] W = Q \cdot U\, [/math]
AdeltaGR_Aflmurho
[math] d = 2 \cdot \sqrt \dfrac{A}{\pi}\, [/math] ● [math] d = 2 \cdot r\, [/math] ●
[math] \delta = \sqrt \dfrac{\rho}{\pi \cdot f \cdot \mu_r \cdot \mu_0}\, [/math] ● [math] \delta = \sqrt \dfrac{1}{\pi \cdot f \cdot \gamma \cdot \mu_r \cdot \mu_0}\, [/math] ●
[math] A_{DC} = A\, [/math] ● [math] A_{DC} = \dfrac{\pi}{4} d^2\, [/math] ● [math] A_{DC} = \pi \cdot r^2\, [/math] ● [math] A_{DC} = a \cdot b\, [/math] ●
[math] A_{AC} = \pi \cdot \delta \cdot( d - \delta )\, [/math] ● [math] A_{AC} = 2 \cdot \delta \cdot ( a + b - 2 \cdot \delta )\, [/math] ●
[math] G_{DC} = \dfrac{A_{DC} \cdot \gamma}{l}\, [/math] ● [math] G_{DC} = \dfrac{A_{DC} }{l\cdot \rho}\, [/math] ● [math] G_{AC} = \dfrac{A_{AC} \cdot \gamma}{l}\, [/math] ● [math] G_{AC} = \dfrac{A_{AC} }{l\cdot \rho}\, [/math] ●
[math] R_{DC} = \dfrac{l}{A_{DC} \cdot \gamma}\, [/math] ●
[math] R_{DC} = \dfrac{l\cdot \rho}{A_{DC} }\, [/math] ●
[math] R_{AC} = \dfrac{l}{A_{AC} \cdot \gamma}\, [/math] ●
[math] R_{AC} = \dfrac{l\cdot \rho}{A_{AC} }\, [/math] ●
[math] A_{DC/AC}= G_{DC/AC}= R_{AC/DC} = \dfrac{A_{DC}}{A_{AC}}\, [/math] ●
α ● C ● T
- alpha_CT__alpha ● [math] \alpha = \dfrac{\dfrac{C_1}{C_0}-1}{T_1 - T_0} \, [/math]
[math] C_1 = C_0 \cdot( 1 + \alpha \cdot( T_1 - T_0 ) ) \, [/math] ● [math] T_1 = T_0 + \dfrac{\dfrac{C_1}{C_0}-1}{ \alpha} \, [/math] ●
α ● GR ● T
[math] G_1 = \dfrac{1}{R_1} \, [/math] ● [math] R_1 = R_0 \cdot( 1 + \alpha \cdot( T_1 - T_0 ) ) \, [/math] ●
[math] G_1 = \dfrac{G_0}{ 1 + \alpha \cdot( T_1 - T_0 )} \, [/math] ● [math] R_1 = \dfrac{1}{G_1} \, [/math] ●
[math] T_1 = T_0 + \dfrac{\dfrac{G_0}{G_1}-1}{ \alpha} \, [/math] ● [math] T_1 = T_0 + \dfrac{G_0 \cdot R_1 - 1}{ \alpha} \, [/math] ● [math] T_1 = T_0 + \dfrac{\dfrac{1}{R_0 \cdot G_1}-1}{ \alpha} \, [/math] ● [math] T_1 = T_0 + \dfrac{\dfrac{R_1}{R_0}-1}{ \alpha} \, [/math] ●
- alpha_GRT_GG ● [math] \alpha = \dfrac{\dfrac{G_0}{G_1}-1}{T_1 - T_0} \, [/math]
- alpha_GRT_GR ● [math] \alpha = \dfrac{G_0 \cdot R_1 - 1}{T_1 - T_0} \, [/math]
- alpha_GRT_RG ● [math] \alpha = \dfrac{\dfrac{1}{R_0 \cdot G_1}-1}{T_1 - T_0} \, [/math]
- alpha_GRT_RR ● [math] \alpha = \dfrac{\dfrac{R_1}{R_0}-1}{T_1 - T_0} \, [/math]
B_DfQ
[math] B = \dfrac{f}{Q}\, [/math] ● [math] B = D \cdot f\, [/math] ●
BDfQR_CLR
[math] D = 0\, [/math] ● [math] D = \dfrac{1}{R_p} \cdot \sqrt{ \dfrac{L}{C} }\, [/math] ● [math] D = R_s \cdot \sqrt{ \dfrac{C}{L} }\, [/math] ● [math] D = \dfrac{1}{R_p} \cdot \sqrt{ \dfrac{L}{C} } + R_s \cdot \sqrt{ \dfrac{C}{L} }\, [/math] ● [math] Q = \dfrac{1}{D}\, [/math] ● [math] f = \dfrac{1}{2 \cdot \pi \cdot f \cdot \sqrt{C \cdot L }} \cdot \sqrt{1 - \dfrac{1}{4 \cdot Q^2}}\, [/math] ● [math] B = D \cdot f\, [/math] ● [math] R_s = 0 \ \Omega \, [/math] ● [math] R_p = \dfrac{1}{D} \cdot \sqrt{ \dfrac{L}{C} }\, [/math] ● [math] R_p = \infin \ \Omega \, [/math] ● [math] R_s = D \cdot \sqrt{ \dfrac{L}{C} }\, [/math] ● [math] Z_0 = \sqrt{ \dfrac{L}{C} }\, [/math] ●
CE_IQUt
[math] C = \dfrac{Q}{U}\, [/math] ● [math] E = \dfrac{Q \cdot U}{2}\, [/math] ● [math] C = \dfrac{I \cdot t}{U}\, [/math] ● [math] E = \dfrac{I \cdot t \cdot U}{2}\, [/math] ●
Cf_LR ( elsőfokú szűrő )
[math] C = \dfrac{L}{R^2}\, [/math] ● [math] f_v = \dfrac{R}{2 \cdot \pi \cdot L}\, [/math] ●
CL_fR ( elsőfokú szűrő )
[math] C = \dfrac{1}{2 \cdot \pi \cdot f_v \cdot R}\, [/math] ● [math] L = \dfrac{R}{2 \cdot \pi \cdot f_v}\, [/math] ●
cos φ
[math] \cos \phi = \dfrac{R}{|Z|}\, [/math] ●
CR_fL ( elsőfokú szűrő )
[math] C = \dfrac{1}{4 \cdot \pi^2 \cdot {f_v}^2 \cdot L}\, [/math] ● [math] R = 2 \cdot \pi \cdot f_v \cdot L\, [/math] ●
CU_EIQt
[math] C = \dfrac{Q^2}{2 \cdot E}\, [/math] ● [math] U = \dfrac{2 \cdot E}{Q}\, [/math] ● [math] C = \dfrac{\left(I \cdot t\right)^2}{2 \cdot E}\, [/math] ● [math] U = \dfrac{2 \cdot E}{I \cdot t}\, [/math] ●
CYZ_fL
[math] C = \dfrac{1}{ \left( 2 \cdot \pi \cdot f \right)^2 \cdot L}\, [/math] ● [math] Y_L = \dfrac{-1}{ 2 \cdot \pi \cdot f \cdot L} \cdot \mathrm{i} = -\sqrt{\dfrac{C}{L}} \cdot \mathrm{i}\, [/math] ● [math] Z_L = 2 \cdot \pi \cdot f \cdot L\cdot \mathrm{i} = \sqrt{\dfrac{L}{C}} \cdot \mathrm{i} \, [/math] ●
DQ_Bf
[math] D = \dfrac{B}{f}\, [/math] ● [math] Q = \dfrac{f}{B}\, [/math] ●
DQRp_CfRs
[math] D = \tan \left( \delta \right) = 2 \cdot \pi \cdot f \cdot C \cdot R_s\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = \dfrac{1}{2 \cdot \pi \cdot f \cdot C \cdot R_s}\, [/math] ● [math] R_p = \dfrac{1}{{\left(2 \cdot \pi \cdot f \cdot C\right)}^2 \cdot R_s }\, [/math] ●
DQRp_fLRs
[math] D = \tan \left( \delta \right) = \dfrac{R_s}{2 \cdot \pi \cdot f \cdot L}\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = \dfrac{2 \cdot \pi \cdot f \cdot L}{R_s}\, [/math] ● [math] R_p = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2 }{R_s }\, [/math] ●
DQRs_CfRp
[math] D = \tan \left( \delta \right) = \dfrac{1}{2 \cdot \pi \cdot f \cdot C \cdot R_p }\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = 2 \cdot \pi \cdot f \cdot C \cdot R_p\, [/math] ● [math] R_s = \dfrac{1}{{\left(2 \cdot \pi \cdot f \cdot C\right)}^2 \cdot R_p }\, [/math] ●
DQRs_fLRp
[math] D = \tan \left( \delta \right) = \dfrac{2 \cdot \pi \cdot f \cdot L}{ R_p }\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = \dfrac{R_p}{2 \cdot \pi \cdot f \cdot L }\, [/math] ● [math] R_s = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2}{R_p }\, [/math] ●
E ● l ● U
[math] E = \dfrac{U}{l}\, [/math] ● [math] l = \dfrac{U}{E}\, [/math] ● [math] U = E \cdot l\, [/math] ●
EU_CIQt
[math] E = \dfrac{Q^2}{2 \cdot C}\, [/math] ● [math] U = \dfrac{Q}{C}\, [/math] ● [math] E = \dfrac{\left(I \cdot t \right)^2}{2 \cdot C}\, [/math] ● [math] U = \dfrac{I \cdot t}{C}\, [/math] ●
f_BDQ
[math] f = \dfrac{B}{D}\, [/math] ● [math] f = B \cdot Q\, [/math] ●
fL_CR ( elsőfokú szűrő )
[math] f_v = \dfrac{1}{2 \cdot \pi \cdot\ C \cdot R}\, [/math] ● [math] L = C \cdot R^2\, [/math] ●
fR_CL ( elsőfokú szűrő )
[math] f_v = \dfrac{1}{2 \cdot \pi \cdot\ \sqrt{C \cdot L}}\, [/math] ● [math] R = \sqrt\dfrac{L}{C}\, [/math] ●
G_gm
[math] G = g \cdot m\, [/math] ●
Gm_grhoV
[math] V = \dfrac{\pi \cdot d^3}{6}\, [/math] ● [math] V = \dfrac{4 \cdot \pi \cdot r^3}{3}\, [/math] ●
[math] V = A \cdot l\, [/math] ● [math] V = \dfrac{\pi \cdot d^2 \cdot l}{4}\, [/math] ● [math] V = \pi \cdot r^2 \cdot l\, [/math] ●
[math] V = a \cdot b \cdot c\, [/math] ●
[math] m = \rho \cdot V\, [/math] ●
[math] G = g \cdot m\, [/math] ●
h_Rbt
[math] h = R_b \cdot t\, [/math] ●
I_AJ
[math] I = A \cdot J\, [/math] ● [math] I = \dfrac{\pi \cdot d^2 \cdot J}{4}\, [/math] ● [math] I = \pi \cdot r^2 \cdot J\, [/math] ●
[math] I = \dfrac{A}{J^{-1}}\, [/math] ● [math] I = \dfrac{\pi \cdot d^2}{4 \cdot J^{-1}}\, [/math] ● [math] I = \dfrac{\pi \cdot r^2}{J^{-1}}\, [/math] ●
J_AI
[math] J = \dfrac{I}{A}\, [/math] ● [math] J = \dfrac{4 \cdot I}{\pi \cdot d^2}\, [/math] ● [math] J = \dfrac{I}{\pi \cdot r^2}\, [/math] ●
[math] J^{-1} = \dfrac{A}{I}\, [/math] ● [math] J^{-1} = \dfrac{\pi \cdot d^2}{4 \cdot I}\, [/math] ● [math] J^{-1} = \dfrac{\pi \cdot r^2}{I}\, [/math] ●
LR_Cf ( elsőfokú szűrő )
[math] L = \dfrac{1}{4 \cdot \pi^2 \cdot C \cdot {f_v}^2}\, [/math] ● [math] R = \dfrac{1}{2 \cdot \pi \cdot C \cdot f_v}\, [/math] ●
l_RRl
[math] l = \dfrac{R}{R'} = \dfrac{A \cdot R}{\rho}\, [/math] ●
l_tv
[math] l = t \cdot v\, [/math] ●
m ● ρ ● V
[math] m = \rho \cdot V\, [/math] ● [math] \rho = \dfrac{m}{V}\, [/math] ● [math] V = \dfrac{m}{\rho}\, [/math] ●
P_tW
[math] P = \dfrac{W}{t}\, [/math] ●
Rb_ht
[math] R_b = \dfrac{h}{t}\, [/math] ●
Rl_lR
[math] R' = \dfrac{R}{l} = \dfrac{\rho}{A}\, [/math] ●
R_lRl
[math] R = l \cdot R' = \dfrac{l \cdot \rho}{A}\, [/math] ●
t_hRb
[math] t = \dfrac{h}{R_b}\, [/math] ●
t_IPUW
[math] t = \dfrac{W}{P}\, [/math] ● [math] t = \dfrac{W}{I \cdot U}\, [/math] ●
t_lv
[math] t = \dfrac{l}{v}\, [/math] ●
V_abcdrl
[math] V = \dfrac{\pi \cdot d^3}{6}\, [/math] ● [math] V = \dfrac{4 \cdot \pi \cdot r^3}{3}\, [/math] ●
[math] V = A \cdot l\, [/math] ● [math] V = \dfrac{\pi \cdot d^2 \cdot l}{4}\, [/math] ● [math] V = \pi \cdot r^2 \cdot l\, [/math] ●
[math] V = a \cdot b \cdot c\, [/math] ●
v_lt
[math] v = \dfrac{l}{t}\, [/math] ●
W_IPtU
[math] W = P \cdot t\, [/math] ● [math] W = I \cdot U \cdot t\, [/math] ●