„Maxwell-egyenletek” változatai közötti eltérés
9. sor: | 9. sor: | ||
# Gerjesztettségi mennyiségek: <math>D=\varepsilon E ~~~ H=\frac{1}{\mu}B ~~~ J=\sigma(E+E_b)</math><br> | # Gerjesztettségi mennyiségek: <math>D=\varepsilon E ~~~ H=\frac{1}{\mu}B ~~~ J=\sigma(E+E_b)</math><br> | ||
# Energiasűrűség: <math>w=\frac{1}{2}\varepsilon E^2+\frac{1}{2}\mu H^2</math><br> | # Energiasűrűség: <math>w=\frac{1}{2}\varepsilon E^2+\frac{1}{2}\mu H^2</math><br> | ||
+ | |||
+ | De ha valaki végig tudná magyarázni, hogy miről szólnak, nagyra értékelném. Például így: | ||
+ | |||
+ | A Gauss törvény arról szól, hogy ha van egy feltöltött kondink, amiből valamennyit kisütünk, akkor ennek megfelelően csökken a fegyverzetek között a térerősség. Vagy hogy ez a gyönyörű képlet matematikai megfogalmazása annak, hogy a költekezéstől szegényebbek leszünk. | ||
+ | Esetleg a Faraday indukció törvénye nem arról szól, hogy amikor gyorsabban pedálozok jobban világít a bicajom lámpája? Csak benne van a képletben tekercs is meg a mágnespatkó ereje? | ||
+ | Mert addig a női szabó rádióamatőr barátom nem lesz tőle okosabb az biztos -ha egyáltalán el tudja olvasni amit lát... | ||
+ | |||
+ | HA5KJ | ||
== A Maxwell egyenletek differenciális alakja == | == A Maxwell egyenletek differenciális alakja == |
A lap 2006. június 7., 00:10-kori változata
Bebizonyítható, hogy a Maxwell egyenletek ellentmondásmentes rendszert alkotnak....
A Maxwell egyenletek integrális alakja
Az elektromágneses tér egyenleteit először Maxwell állította össze:
- Az eltolási árammal kiegészített gerjesztési törvény: [math] \oint_{l} H\, dl=\int_{A}J\, dA+\int_{A}\frac{\partial D}{\partial t}\, dA[/math]
- Faraday indukció törvénye: [math]\oint_{l}E\, dl=-\int_{A}\frac{\partial B}{\partial t}\, dA[/math]
- Fluxusmegmaradás törvénye: [math]\oint_{A}B\, dA=0[/math]
- Gauss-törvény: [math]\oint_{A}D\, dA=\int_{V}\rho\, dV[/math]
- Gerjesztettségi mennyiségek: [math]D=\varepsilon E ~~~ H=\frac{1}{\mu}B ~~~ J=\sigma(E+E_b)[/math]
- Energiasűrűség: [math]w=\frac{1}{2}\varepsilon E^2+\frac{1}{2}\mu H^2[/math]
De ha valaki végig tudná magyarázni, hogy miről szólnak, nagyra értékelném. Például így:
A Gauss törvény arról szól, hogy ha van egy feltöltött kondink, amiből valamennyit kisütünk, akkor ennek megfelelően csökken a fegyverzetek között a térerősség. Vagy hogy ez a gyönyörű képlet matematikai megfogalmazása annak, hogy a költekezéstől szegényebbek leszünk. Esetleg a Faraday indukció törvénye nem arról szól, hogy amikor gyorsabban pedálozok jobban világít a bicajom lámpája? Csak benne van a képletben tekercs is meg a mágnespatkó ereje? Mert addig a női szabó rádióamatőr barátom nem lesz tőle okosabb az biztos -ha egyáltalán el tudja olvasni amit lát...
HA5KJ
A Maxwell egyenletek differenciális alakja
- Az eltolási árammal kiegészített gerjesztési törvény: [math]\operatorname{rot}H=J+\frac{\partial D}{\partial t}[/math]
- Faraday indukció törvénye: [math]\operatorname{rot}E=-\frac{\partial B}{\partial t}[/math]
- Fluxusmegmaradás törvénye: [math]\operatorname{div}B=0[/math]
- Gauss-törvény: [math]\operatorname{div}D=\rho[/math]
- Gerjesztettségi mennyiségek: [math]D=\varepsilon E ~~~ H=\frac{1}{\mu}B ~~~ J=\sigma(E+E_b)[/math]
- Energiasűrűség: [math]w=\frac{1}{2}\varepsilon E^2+\frac{1}{2}\mu H^2[/math]