„Szerkesztő:Gg630504/Képletek” változatai közötti eltérés
a (P_tW) |
|||
(57 közbenső módosítás ugyanattól a szerkesztőtől nincs mutatva) | |||
1. sor: | 1. sor: | ||
− | + | [http://hg9ieg.uw.hu/szamolo/index.html Számoló] | |
== 0 == | == 0 == | ||
6. sor: | 6. sor: | ||
<math> = \, </math> ● | <math> = \, </math> ● | ||
− | == | + | == ABC == |
− | + | === A === | |
− | |||
− | <math> A = I \cdot J^{-1}\, </math> ● | + | * APU_aflPU_a ● <math> a_{Pf} = a_{P0}^{\sqrt{\dfrac{f}{f_0}}} \, </math> |
− | <math> d = \sqrt{\ | + | * APU_aflPU_A ● <math> A_P = a_{P0}^{\sqrt{\dfrac{f}{f_0}} \cdot l} = a_{Pf}^l\, </math> |
+ | * APU_aflPU_Pb ● <math> P_b = \dfrac{P_k}{A_P}\, </math> | ||
+ | * APU_aflPU_Pk ● <math> P_k = A_P \cdot P_b\, </math> | ||
+ | * APU_aflPU_Ub ● <math> U_b = \dfrac{U_k}{\sqrt{A_P}}\, </math> | ||
+ | * APU_aflPU_Uk ● <math> U_k = \sqrt{A_P} \cdot U_b\, </math> | ||
+ | * A_IJ_A_J1 ● <math> A = I \cdot J^{-1}\, </math> | ||
+ | * A_IJ_A_J ● <math> A = \dfrac{I}{J}\, </math> | ||
+ | * A_IJ_d_J1 ● <math> d = \sqrt{\dfrac{4 \cdot I \cdot J^{-1}}{\pi}}\, </math> | ||
+ | * A_IJ_d_J ● <math> d = \sqrt{\dfrac{4 \cdot I}{\pi \cdot J}}\, </math> | ||
+ | |||
+ | === C === | ||
+ | * Cdelta_star_C01 ● <math> C_{01} = \dfrac{C_{0} \cdot C_{1}}{C_{0} + C_{1} + C_{2}}\, </math> | ||
+ | * Cdelta_star_C02 ● <math> C_{02} = \dfrac{C_{0} \cdot C_{2}}{C_{0} + C_{1} + C_{2}}\, </math> | ||
+ | * Cdelta_star_C12 ● <math> C_{12} = \dfrac{C_{1} \cdot C_{2}}{C_{0} + C_{1} + C_{2}}\, </math> | ||
+ | * Cstar_delta_C0 ● <math> C_{0} = \dfrac{C_{01} \cdot C_{02}}{C_{12}} + C_{01} + C_{02}\, </math> | ||
+ | * Cstar_delta_C1 ● <math> C_{1} = \dfrac{C_{01} \cdot C_{12}}{C_{02}} + C_{01} + C_{12}\, </math> | ||
+ | * Cstar_delta_C2 ● <math> C_{2} = \dfrac{C_{02} \cdot C_{12}}{C_{01}} + C_{02} + C_{12}\, </math> | ||
+ | * C_CfInU_f ● <math> f_r = n \cdot f\, </math> | ||
+ | * C_CfInU_C ● <math> C = \dfrac{I}{n \cdot f \cdot U_{pp}}\, </math> | ||
+ | |||
+ | === F === | ||
+ | * fQRG_fXTL_7005RX ● <math> f_{7005\_RXL} = 9 \cdot f_k+21,4\cdot 10^6 \ \mathrm{Hz}\, </math> | ||
+ | * fQRG_fXTL_7005TX ● <math> f_{7005\_TX} = 12 \cdot f_k\, </math> | ||
+ | * fQRG_fXTL_ICRX ● <math> f_{IC\_RX} = 9 \cdot f_k+10,7\cdot 10^6 \ \mathrm{Hz}\, </math> | ||
+ | * fQRG_fXTL_ICTX ● <math> f_{IC\_TX} = 8 \cdot f_k\, </math> | ||
+ | * fQRG_fXTL_MTRXL ● <math> f_{MT\_RXL} = 3 \cdot f_k+10,7\cdot 10^6 \ \mathrm{Hz}\, </math> | ||
+ | * fQRG_fXTL_MTRXU ● <math> f_{MT\_RXU} = 3 \cdot f_k-10,7\cdot 10^6 \ \mathrm{Hz}\, </math> | ||
+ | * fQRG_fXTL_MTTX ● <math> f_{MT\_TX} = 18 \cdot f_k\, </math> | ||
+ | * fQRG_fXTL_VRXL ● <math> f_{V\_RXL} = 17 \cdot f_k+455\cdot 10^3 \ \mathrm{Hz}\, </math> | ||
+ | * fQRG_fXTL_VRXU ● <math> f_{V\_RXU} = 15 \cdot f_k-455\cdot 10^3 \ \mathrm{Hz}\, </math> | ||
+ | * fQRG_fXTL_VTX ● <math> f_{V\_TX} = 24 \cdot f_k\, </math> | ||
+ | * fXTL_fQRG_7005RX ● <math> f_{7005\_RXL} = (f_v-21,4\cdot 10^6 \ \mathrm{Hz}) / 9\, </math> | ||
+ | * fXTL_fQRG_7005TX ● <math> f_{7005\_TX} = f_v / 12\, </math> | ||
+ | * fXTL_fQRG_ICRX ● <math> f_{IC\_RX} = (f_v-10,7\cdot 10^6 \ \mathrm{Hz}) / 9\, </math> | ||
+ | * fXTL_fQRG_ICTX ● <math> f_{IC\_TX} = f_v / 8\, </math> | ||
+ | * fXTL_fQRG_MTRX ● <math> f_{MT\_RXL} = (f_v-10,7\cdot 10^6 \ \mathrm{Hz}) / 3\, </math> | ||
+ | * fXTL_fQRG_MTRXU ● <math> f_{MT\_RXU} = (f_v+10,7\cdot 10^6 \ \mathrm{Hz}) / 3\, </math> | ||
+ | * fXTL_fQRG_MTTX ● <math> f_{MT\_TX} = f_v / 18\, </math> | ||
+ | * fXTL_fQRG_VRXL ● <math> f_{V\_RXL} = (f_v-455\cdot 10^3 \ \mathrm{Hz}) / 17\, </math> | ||
+ | * fXTL_fQRG_VRXU ● <math> f_{V\_RXU} = (f_v+455\cdot 10^3 \ \mathrm{Hz}) / 15\, </math> | ||
+ | * fXTL_fQRG_VTX ● <math> f_{V\_TX} = f_v / 24\, </math> | ||
+ | * f_CInU_f ● <math> f = \dfrac{I}{C \cdot n \cdot U}\, </math> | ||
+ | * f_CInU_fr ● <math> f_r = f \cdot n = \dfrac{I}{C \cdot U}\, </math> | ||
+ | |||
+ | === I === | ||
+ | * I_CfnU_fr ● <math> f_r = f \cdot n\, </math> | ||
+ | * I_CfnU_I ● <math> I = C \cdot f \cdot n \cdot U\, </math> | ||
+ | |||
+ | === P === | ||
+ | |||
+ | * PphiQSYZ_IU_cosphi ● <math> \cos(\varphi) = \dfrac{\mathrm{re}(S)}{|S|}\, </math> | ||
+ | * PphiQSYZ_IU_P ● <math> P = \mathrm{re}(S)\, </math> | ||
+ | * PphiQSYZ_IU_phi ● <math> \varphi = \arctan \left(\dfrac{\mathrm{im}(S)}{\mathrm{re}(S)} \right)\, </math> | ||
+ | * PphiQSYZ_IU_Q ● <math> Q = \mathrm{im}(S)\, </math> | ||
+ | * PphiQSYZ_IU_S ● <math> S = U \cdot I^*\, </math> | ||
+ | * PphiQSYZ_IU_Y ● <math> Y = \dfrac{I}{U}\, </math> | ||
+ | * PphiQSYZ_IU_Z ● <math> Z = \dfrac{U}{I}\, </math> | ||
+ | |||
+ | === T === | ||
+ | * t_tTZ2 ● <math> t_1 = t_0 - TZ_0 + TZ_1\, </math> | ||
+ | |||
+ | === U === | ||
+ | * U_CfIN_f ● <math> f_r = n \cdot f\, </math> | ||
+ | * U_CfIN_U ● <math> U_{pp} = \dfrac{I}{C \cdot n \cdot f}\, </math> | ||
+ | |||
+ | == Rövid bevezető == | ||
+ | |||
+ | [http://users.atw.hu/hg9ieg/_sz/rovid_bevezeto_az_elektronikaba.html rovid_bevezeto_az_elektronikaba.html] | ||
+ | |||
+ | * bev_f_T ● <math> f = \dfrac{1}{T}\, </math> | ||
+ | * bev_G_auto ● <math> G = \dfrac{I}{U} = \dfrac{1,75\ \mathrm{amper}}{12\ \mathrm{volt}} = 0,1458\ \mathrm{siemens}\, </math> | ||
+ | * bev_G_IU ● <math> G = \dfrac{I}{U}\, </math> | ||
+ | * bev_I_250_mA ● <math> I = \dfrac{Q}{t} = \dfrac{9000\ \mathrm{coulomb}}{36000\ \mathrm{s}} = 0,25\ \mathrm{amper}\, </math> | ||
+ | * bev_I_Qt ● <math> I = \dfrac{Q}{t}\, </math> | ||
+ | * bev_I_RU ● <math> I = \dfrac{U}{R}\, </math> | ||
+ | * bev_P_12_51 ● <math> P = \dfrac{(12\ \mathrm{volt})^2}{51\ \mathrm{ohm}} = \dfrac{12\ \mathrm{volt} \cdot 12\ \mathrm{volt}}{51\ \dfrac{\mathrm{volt}}{\mathrm{amper}}} = 2,824\ \mathrm{watt}\, </math> | ||
+ | * bev_P_auto ● <math> P = I \cdot U = 1,75\ \mathrm{amper} \cdot 12\ \mathrm{volt} = 21\ \mathrm{watt}\, </math> | ||
+ | * bev_P_IU ● <math> P = \dfrac{W}{t} = \dfrac{Q \cdot U}{t} = \dfrac{I \cdot t \cdot U}{t} = I \cdot U\, </math> | ||
+ | * bev_P_IU_ ● <math> P = I \cdot U\, </math> | ||
+ | * bev_P_RU ● <math> P = I \cdot U = \left(\dfrac{U}{R}\right)\cdot U = \dfrac{U^2}{R}\, </math> | ||
+ | * bev_P_tW ● <math> P = \dfrac{W}{t}\, </math> | ||
+ | * bev_Q_It ● <math> Q = I \cdot t\, </math> | ||
+ | * bev_R_auto ● <math> R = \dfrac{U}{I} = \dfrac{12\ \mathrm{volt}}{1,75\ \mathrm{amper}} = 6,857\ \mathrm{ohm}\, </math> | ||
+ | * bev_R_IU ● <math> R = \dfrac{U}{I}\, </math> | ||
+ | * bev_RU ● <math> \dfrac{U}{R}\, </math> | ||
+ | * bev_T_50_Hz ● <math> T = \dfrac{1}{f} = \dfrac{1}{50\ \mathrm{Hz}} = 0,02\ \mathrm{s}\, </math> | ||
+ | * bev_T_f ● <math> T = \dfrac{1}{f}\, </math> | ||
+ | * bev_U_QW ● <math> U_{AB} = \dfrac{W_{AB}}{Q}\, </math> | ||
+ | * bev_W_QU ● <math> W = Q \cdot U\, </math> | ||
+ | |||
+ | * bev_F_Glm ● <math> F = G \cdot \dfrac{m_0 \cdot m_1}{l^2}\, </math> | ||
+ | * bev_F_epslQ ● <math> F = \dfrac{1}{4 \cdot \pi \cdot \epsilon_0} \cdot \dfrac{Q_0 \cdot Q_1}{l^2}\, </math> | ||
+ | |||
+ | * bev_W_Glm ● <math> W_{m_0 l} = \left( G \cdot \dfrac{ m_0}{l} \right) \cdot m_1= U \cdot m_1\, </math> | ||
+ | |||
+ | * bev_W_epslQ ● <math> W_{Q_0 l} = \left( \dfrac{1}{4 \cdot \pi \cdot \epsilon_0} \cdot \dfrac{Q_0}{l} \right) \cdot Q_1= U \cdot Q_1\, </math> | ||
+ | |||
+ | == AdeltaGR_Aflmurho == | ||
+ | |||
+ | <math> d = 2 \cdot \sqrt \dfrac{A}{\pi}\, </math> ● | ||
+ | <math> d = 2 \cdot r\, </math> ● | ||
+ | |||
+ | <math> \delta = \sqrt \dfrac{\rho}{\pi \cdot f \cdot \mu_r \cdot \mu_0}\, </math> ● | ||
+ | <math> \delta = \sqrt \dfrac{1}{\pi \cdot f \cdot \gamma \cdot \mu_r \cdot \mu_0}\, </math> ● | ||
+ | |||
+ | <math> A_{DC} = A\, </math> ● | ||
+ | <math> A_{DC} = \dfrac{\pi}{4} d^2\, </math> ● | ||
+ | <math> A_{DC} = \pi \cdot r^2\, </math> ● | ||
+ | <math> A_{DC} = a \cdot b\, </math> ● | ||
+ | |||
+ | <math> A_{AC} = \pi \cdot \delta \cdot( d - \delta )\, </math> ● | ||
+ | <math> A_{AC} = 2 \cdot \delta \cdot ( a + b - 2 \cdot \delta )\, </math> ● | ||
+ | |||
+ | <math> G_{DC} = \dfrac{A_{DC} \cdot \gamma}{l}\, </math> ● | ||
+ | <math> G_{DC} = \dfrac{A_{DC} }{l\cdot \rho}\, </math> ● | ||
+ | <math> G_{AC} = \dfrac{A_{AC} \cdot \gamma}{l}\, </math> ● | ||
+ | <math> G_{AC} = \dfrac{A_{AC} }{l\cdot \rho}\, </math> ● | ||
+ | |||
+ | |||
+ | <math> R_{DC} = \dfrac{l}{A_{DC} \cdot \gamma}\, </math> ● | ||
+ | <math> R_{DC} = \dfrac{l\cdot \rho}{A_{DC} }\, </math> ● | ||
+ | <math> R_{AC} = \dfrac{l}{A_{AC} \cdot \gamma}\, </math> ● | ||
+ | <math> R_{AC} = \dfrac{l\cdot \rho}{A_{AC} }\, </math> ● | ||
+ | |||
+ | <math> A_{DC/AC}= G_{DC/AC}= R_{AC/DC} = \dfrac{A_{DC}}{A_{AC}}\, </math> ● | ||
+ | |||
+ | == α ● C ● T == | ||
+ | |||
+ | * alpha_CT__alpha ● <math> \alpha = \dfrac{\dfrac{C_1}{C_0}-1}{T_1 - T_0} \, </math> | ||
+ | <math> C_1 = C_0 \cdot( 1 + \alpha \cdot( T_1 - T_0 ) ) \, </math> ● | ||
+ | <math> T_1 = T_0 + \dfrac{\dfrac{C_1}{C_0}-1}{ \alpha} \, </math> ● | ||
+ | |||
+ | == α ● GR ● T == | ||
+ | |||
+ | <math> G_1 = \dfrac{1}{R_1} \, </math> ● | ||
+ | <math> R_1 = R_0 \cdot( 1 + \alpha \cdot( T_1 - T_0 ) ) \, </math> ● | ||
+ | |||
+ | <math> G_1 = \dfrac{G_0}{ 1 + \alpha \cdot( T_1 - T_0 )} \, </math> ● | ||
+ | <math> R_1 = \dfrac{1}{G_1} \, </math> ● | ||
+ | |||
+ | <math> T_1 = T_0 + \dfrac{\dfrac{G_0}{G_1}-1}{ \alpha} \, </math> ● | ||
+ | <math> T_1 = T_0 + \dfrac{G_0 \cdot R_1 - 1}{ \alpha} \, </math> ● | ||
+ | <math> T_1 = T_0 + \dfrac{\dfrac{1}{R_0 \cdot G_1}-1}{ \alpha} \, </math> ● | ||
+ | <math> T_1 = T_0 + \dfrac{\dfrac{R_1}{R_0}-1}{ \alpha} \, </math> ● | ||
+ | |||
+ | * alpha_GRT_GG ● <math> \alpha = \dfrac{\dfrac{G_0}{G_1}-1}{T_1 - T_0} \, </math> | ||
+ | * alpha_GRT_GR ● <math> \alpha = \dfrac{G_0 \cdot R_1 - 1}{T_1 - T_0} \, </math> | ||
+ | * alpha_GRT_RG ● <math> \alpha = \dfrac{\dfrac{1}{R_0 \cdot G_1}-1}{T_1 - T_0} \, </math> | ||
+ | * alpha_GRT_RR ● <math> \alpha = \dfrac{\dfrac{R_1}{R_0}-1}{T_1 - T_0} \, </math> | ||
== B_DfQ == | == B_DfQ == | ||
36. sor: | 183. sor: | ||
== CE_IQUt == | == CE_IQUt == | ||
− | <math> C = \ | + | <math> C = \dfrac{Q}{U}\, </math> ● |
− | <math> E = \ | + | <math> E = \dfrac{Q \cdot U}{2}\, </math> ● |
− | <math> C = \ | + | <math> C = \dfrac{I \cdot t}{U}\, </math> ● |
− | <math> E = \ | + | <math> E = \dfrac{I \cdot t \cdot U}{2}\, </math> ● |
== Cf_LR ( elsőfokú szűrő ) == | == Cf_LR ( elsőfokú szűrő ) == | ||
50. sor: | 197. sor: | ||
<math> C = \dfrac{1}{2 \cdot \pi \cdot f_v \cdot R}\, </math> ● | <math> C = \dfrac{1}{2 \cdot \pi \cdot f_v \cdot R}\, </math> ● | ||
<math> L = \dfrac{R}{2 \cdot \pi \cdot f_v}\, </math> ● | <math> L = \dfrac{R}{2 \cdot \pi \cdot f_v}\, </math> ● | ||
+ | |||
+ | == cos φ == | ||
+ | |||
+ | <math> \cos \phi = \dfrac{R}{|Z|}\, </math> ● | ||
== CR_fL ( elsőfokú szűrő ) == | == CR_fL ( elsőfokú szűrő ) == | ||
58. sor: | 209. sor: | ||
== CU_EIQt == | == CU_EIQt == | ||
− | <math> C = \ | + | <math> C = \dfrac{Q^2}{2 \cdot E}\, </math> ● |
− | <math> U = \ | + | <math> U = \dfrac{2 \cdot E}{Q}\, </math> ● |
− | <math> C = \ | + | <math> C = \dfrac{\left(I \cdot t\right)^2}{2 \cdot E}\, </math> ● |
− | <math> U = \ | + | <math> U = \dfrac{2 \cdot E}{I \cdot t}\, </math> ● |
== CYZ_fL == | == CYZ_fL == | ||
101. sor: | 252. sor: | ||
<math> Q = \dfrac{1}{D} = \dfrac{R_p}{2 \cdot \pi \cdot f \cdot L }\, </math> ● | <math> Q = \dfrac{1}{D} = \dfrac{R_p}{2 \cdot \pi \cdot f \cdot L }\, </math> ● | ||
<math> R_s = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2}{R_p }\, </math> ● | <math> R_s = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2}{R_p }\, </math> ● | ||
+ | |||
+ | == E ● l ● U == | ||
+ | |||
+ | <math> E = \dfrac{U}{l}\, </math> ● | ||
+ | <math> l = \dfrac{U}{E}\, </math> ● | ||
+ | <math> U = E \cdot l\, </math> ● | ||
== EU_CIQt == | == EU_CIQt == | ||
− | <math> E = \ | + | <math> E = \dfrac{Q^2}{2 \cdot C}\, </math> ● |
− | <math> U = \ | + | <math> U = \dfrac{Q}{C}\, </math> ● |
− | <math> E = \ | + | <math> E = \dfrac{\left(I \cdot t \right)^2}{2 \cdot C}\, </math> ● |
− | <math> U = \ | + | <math> U = \dfrac{I \cdot t}{C}\, </math> ● |
== f_BDQ == | == f_BDQ == | ||
122. sor: | 279. sor: | ||
<math> f_v = \dfrac{1}{2 \cdot \pi \cdot\ \sqrt{C \cdot L}}\, </math> ● | <math> f_v = \dfrac{1}{2 \cdot \pi \cdot\ \sqrt{C \cdot L}}\, </math> ● | ||
− | <math> R = \sqrt\ | + | <math> R = \sqrt{\dfrac{L}{C}}\, </math> ● |
+ | |||
+ | == G_gm == | ||
+ | |||
+ | <math> G = g \cdot m\, </math> ● | ||
+ | |||
+ | == Gm_grhoV == | ||
+ | |||
+ | <math> V = \dfrac{\pi \cdot d^3}{6}\, </math> ● | ||
+ | <math> V = \dfrac{4 \cdot \pi \cdot r^3}{3}\, </math> ● | ||
+ | |||
+ | <math> V = A \cdot l\, </math> ● | ||
+ | <math> V = \dfrac{\pi \cdot d^2 \cdot l}{4}\, </math> ● | ||
+ | <math> V = \pi \cdot r^2 \cdot l\, </math> ● | ||
+ | |||
+ | <math> V = a \cdot b \cdot c\, </math> ● | ||
+ | |||
+ | <math> m = \rho \cdot V\, </math> ● | ||
+ | |||
+ | <math> G = g \cdot m\, </math> ● | ||
== h_Rbt == | == h_Rbt == | ||
131. sor: | 307. sor: | ||
<math> I = A \cdot J\, </math> ● | <math> I = A \cdot J\, </math> ● | ||
− | <math> I = \ | + | <math> I = \dfrac{\pi \cdot d^2 \cdot J}{4}\, </math> ● |
<math> I = \pi \cdot r^2 \cdot J\, </math> ● | <math> I = \pi \cdot r^2 \cdot J\, </math> ● | ||
− | <math> I = \ | + | <math> I = \dfrac{A}{J^{-1}}\, </math> ● |
− | <math> I = \ | + | <math> I = \dfrac{\pi \cdot d^2}{4 \cdot J^{-1}}\, </math> ● |
− | <math> I = \ | + | <math> I = \dfrac{\pi \cdot r^2}{J^{-1}}\, </math> ● |
== J_AI == | == J_AI == | ||
− | <math> J = \ | + | <math> J = \dfrac{I}{A}\, </math> ● |
− | <math> J = \ | + | <math> J = \dfrac{4 \cdot I}{\pi \cdot d^2}\, </math> ● |
− | <math> J = \ | + | <math> J = \dfrac{I}{\pi \cdot r^2}\, </math> ● |
− | <math> J^{-1} = \ | + | <math> J^{-1} = \dfrac{A}{I}\, </math> ● |
− | <math> J^{-1} = \ | + | <math> J^{-1} = \dfrac{\pi \cdot d^2}{4 \cdot I}\, </math> ● |
− | <math> J^{-1} = \ | + | <math> J^{-1} = \dfrac{\pi \cdot r^2}{I}\, </math> ● |
== LR_Cf ( elsőfokú szűrő ) == | == LR_Cf ( elsőfokú szűrő ) == | ||
− | <math> L = \ | + | <math> L = \dfrac{1}{4 \cdot \pi^2 \cdot C \cdot {f_v}^2}\, </math> ● |
− | <math> R = \ | + | <math> R = \dfrac{1}{2 \cdot \pi \cdot C \cdot f_v}\, </math> ● |
== l_RRl == | == l_RRl == | ||
− | <math> l = \ | + | <math> l = \dfrac{R}{R'} = \dfrac{A \cdot R}{\rho}\, </math> ● |
== l_tv == | == l_tv == | ||
<math> l = t \cdot v\, </math> ● | <math> l = t \cdot v\, </math> ● | ||
+ | |||
+ | == m ● ρ ● V == | ||
+ | |||
+ | <math> m = \rho \cdot V\, </math> ● | ||
+ | <math> \rho = \dfrac{m}{V}\, </math> ● | ||
+ | <math> V = \dfrac{m}{\rho}\, </math> ● | ||
== P_tW == | == P_tW == | ||
− | <math> P = \ | + | <math> P = \dfrac{W}{t}\, </math> ● |
== Rb_ht == | == Rb_ht == | ||
171. sor: | 353. sor: | ||
== Rl_lR == | == Rl_lR == | ||
− | <math> R' = \ | + | <math> R' = \dfrac{R}{l} = \dfrac{\rho}{A}\, </math> ● |
== R_lRl == | == R_lRl == | ||
− | <math> R = l \cdot R' = \ | + | <math> R = l \cdot R' = \dfrac{l \cdot \rho}{A}\, </math> ● |
== t_hRb == | == t_hRb == | ||
189. sor: | 371. sor: | ||
<math> t = \dfrac{l}{v}\, </math> ● | <math> t = \dfrac{l}{v}\, </math> ● | ||
+ | |||
+ | == V_abcdrl == | ||
+ | |||
+ | <math> V = \dfrac{\pi \cdot d^3}{6}\, </math> ● | ||
+ | <math> V = \dfrac{4 \cdot \pi \cdot r^3}{3}\, </math> ● | ||
+ | |||
+ | <math> V = A \cdot l\, </math> ● | ||
+ | <math> V = \dfrac{\pi \cdot d^2 \cdot l}{4}\, </math> ● | ||
+ | <math> V = \pi \cdot r^2 \cdot l\, </math> ● | ||
+ | |||
+ | <math> V = a \cdot b \cdot c\, </math> ● | ||
== v_lt == | == v_lt == | ||
<math> v = \dfrac{l}{t}\, </math> ● | <math> v = \dfrac{l}{t}\, </math> ● | ||
+ | |||
+ | == W_IPtU == | ||
+ | |||
+ | <math> W = P \cdot t\, </math> ● | ||
+ | <math> W = I \cdot U \cdot t\, </math> ● | ||
+ | |||
+ | == Belső ellenállás == | ||
+ | |||
+ | <math> R_b = \dfrac{(U_{k2}-U_{k1})\cdot R_{k1}}{U_{k1}\cdot(1-\dfrac{U_{k2}\cdot R_{k1}}{U_{k1}\cdot R_{k2}})} </math> ● |
A lap jelenlegi, 2023. július 3., 16:37-kori változata
Tartalomjegyzék
- 1 0
- 2 ABC
- 3 Rövid bevezető
- 4 AdeltaGR_Aflmurho
- 5 α ● C ● T
- 6 α ● GR ● T
- 7 B_DfQ
- 8 BDfQR_CLR
- 9 CE_IQUt
- 10 Cf_LR ( elsőfokú szűrő )
- 11 CL_fR ( elsőfokú szűrő )
- 12 cos φ
- 13 CR_fL ( elsőfokú szűrő )
- 14 CU_EIQt
- 15 CYZ_fL
- 16 DQ_Bf
- 17 DQRp_CfRs
- 18 DQRp_fLRs
- 19 DQRs_CfRp
- 20 DQRs_fLRp
- 21 E ● l ● U
- 22 EU_CIQt
- 23 f_BDQ
- 24 fL_CR ( elsőfokú szűrő )
- 25 fR_CL ( elsőfokú szűrő )
- 26 G_gm
- 27 Gm_grhoV
- 28 h_Rbt
- 29 I_AJ
- 30 J_AI
- 31 LR_Cf ( elsőfokú szűrő )
- 32 l_RRl
- 33 l_tv
- 34 m ● ρ ● V
- 35 P_tW
- 36 Rb_ht
- 37 Rl_lR
- 38 R_lRl
- 39 t_hRb
- 40 t_IPUW
- 41 t_lv
- 42 V_abcdrl
- 43 v_lt
- 44 W_IPtU
- 45 Belső ellenállás
0
[math] = \, [/math] ●
ABC
A
- APU_aflPU_a ● [math] a_{Pf} = a_{P0}^{\sqrt{\dfrac{f}{f_0}}} \, [/math]
- APU_aflPU_A ● [math] A_P = a_{P0}^{\sqrt{\dfrac{f}{f_0}} \cdot l} = a_{Pf}^l\, [/math]
- APU_aflPU_Pb ● [math] P_b = \dfrac{P_k}{A_P}\, [/math]
- APU_aflPU_Pk ● [math] P_k = A_P \cdot P_b\, [/math]
- APU_aflPU_Ub ● [math] U_b = \dfrac{U_k}{\sqrt{A_P}}\, [/math]
- APU_aflPU_Uk ● [math] U_k = \sqrt{A_P} \cdot U_b\, [/math]
- A_IJ_A_J1 ● [math] A = I \cdot J^{-1}\, [/math]
- A_IJ_A_J ● [math] A = \dfrac{I}{J}\, [/math]
- A_IJ_d_J1 ● [math] d = \sqrt{\dfrac{4 \cdot I \cdot J^{-1}}{\pi}}\, [/math]
- A_IJ_d_J ● [math] d = \sqrt{\dfrac{4 \cdot I}{\pi \cdot J}}\, [/math]
C
- Cdelta_star_C01 ● [math] C_{01} = \dfrac{C_{0} \cdot C_{1}}{C_{0} + C_{1} + C_{2}}\, [/math]
- Cdelta_star_C02 ● [math] C_{02} = \dfrac{C_{0} \cdot C_{2}}{C_{0} + C_{1} + C_{2}}\, [/math]
- Cdelta_star_C12 ● [math] C_{12} = \dfrac{C_{1} \cdot C_{2}}{C_{0} + C_{1} + C_{2}}\, [/math]
- Cstar_delta_C0 ● [math] C_{0} = \dfrac{C_{01} \cdot C_{02}}{C_{12}} + C_{01} + C_{02}\, [/math]
- Cstar_delta_C1 ● [math] C_{1} = \dfrac{C_{01} \cdot C_{12}}{C_{02}} + C_{01} + C_{12}\, [/math]
- Cstar_delta_C2 ● [math] C_{2} = \dfrac{C_{02} \cdot C_{12}}{C_{01}} + C_{02} + C_{12}\, [/math]
- C_CfInU_f ● [math] f_r = n \cdot f\, [/math]
- C_CfInU_C ● [math] C = \dfrac{I}{n \cdot f \cdot U_{pp}}\, [/math]
F
- fQRG_fXTL_7005RX ● [math] f_{7005\_RXL} = 9 \cdot f_k+21,4\cdot 10^6 \ \mathrm{Hz}\, [/math]
- fQRG_fXTL_7005TX ● [math] f_{7005\_TX} = 12 \cdot f_k\, [/math]
- fQRG_fXTL_ICRX ● [math] f_{IC\_RX} = 9 \cdot f_k+10,7\cdot 10^6 \ \mathrm{Hz}\, [/math]
- fQRG_fXTL_ICTX ● [math] f_{IC\_TX} = 8 \cdot f_k\, [/math]
- fQRG_fXTL_MTRXL ● [math] f_{MT\_RXL} = 3 \cdot f_k+10,7\cdot 10^6 \ \mathrm{Hz}\, [/math]
- fQRG_fXTL_MTRXU ● [math] f_{MT\_RXU} = 3 \cdot f_k-10,7\cdot 10^6 \ \mathrm{Hz}\, [/math]
- fQRG_fXTL_MTTX ● [math] f_{MT\_TX} = 18 \cdot f_k\, [/math]
- fQRG_fXTL_VRXL ● [math] f_{V\_RXL} = 17 \cdot f_k+455\cdot 10^3 \ \mathrm{Hz}\, [/math]
- fQRG_fXTL_VRXU ● [math] f_{V\_RXU} = 15 \cdot f_k-455\cdot 10^3 \ \mathrm{Hz}\, [/math]
- fQRG_fXTL_VTX ● [math] f_{V\_TX} = 24 \cdot f_k\, [/math]
- fXTL_fQRG_7005RX ● [math] f_{7005\_RXL} = (f_v-21,4\cdot 10^6 \ \mathrm{Hz}) / 9\, [/math]
- fXTL_fQRG_7005TX ● [math] f_{7005\_TX} = f_v / 12\, [/math]
- fXTL_fQRG_ICRX ● [math] f_{IC\_RX} = (f_v-10,7\cdot 10^6 \ \mathrm{Hz}) / 9\, [/math]
- fXTL_fQRG_ICTX ● [math] f_{IC\_TX} = f_v / 8\, [/math]
- fXTL_fQRG_MTRX ● [math] f_{MT\_RXL} = (f_v-10,7\cdot 10^6 \ \mathrm{Hz}) / 3\, [/math]
- fXTL_fQRG_MTRXU ● [math] f_{MT\_RXU} = (f_v+10,7\cdot 10^6 \ \mathrm{Hz}) / 3\, [/math]
- fXTL_fQRG_MTTX ● [math] f_{MT\_TX} = f_v / 18\, [/math]
- fXTL_fQRG_VRXL ● [math] f_{V\_RXL} = (f_v-455\cdot 10^3 \ \mathrm{Hz}) / 17\, [/math]
- fXTL_fQRG_VRXU ● [math] f_{V\_RXU} = (f_v+455\cdot 10^3 \ \mathrm{Hz}) / 15\, [/math]
- fXTL_fQRG_VTX ● [math] f_{V\_TX} = f_v / 24\, [/math]
- f_CInU_f ● [math] f = \dfrac{I}{C \cdot n \cdot U}\, [/math]
- f_CInU_fr ● [math] f_r = f \cdot n = \dfrac{I}{C \cdot U}\, [/math]
I
- I_CfnU_fr ● [math] f_r = f \cdot n\, [/math]
- I_CfnU_I ● [math] I = C \cdot f \cdot n \cdot U\, [/math]
P
- PphiQSYZ_IU_cosphi ● [math] \cos(\varphi) = \dfrac{\mathrm{re}(S)}{|S|}\, [/math]
- PphiQSYZ_IU_P ● [math] P = \mathrm{re}(S)\, [/math]
- PphiQSYZ_IU_phi ● [math] \varphi = \arctan \left(\dfrac{\mathrm{im}(S)}{\mathrm{re}(S)} \right)\, [/math]
- PphiQSYZ_IU_Q ● [math] Q = \mathrm{im}(S)\, [/math]
- PphiQSYZ_IU_S ● [math] S = U \cdot I^*\, [/math]
- PphiQSYZ_IU_Y ● [math] Y = \dfrac{I}{U}\, [/math]
- PphiQSYZ_IU_Z ● [math] Z = \dfrac{U}{I}\, [/math]
T
- t_tTZ2 ● [math] t_1 = t_0 - TZ_0 + TZ_1\, [/math]
U
- U_CfIN_f ● [math] f_r = n \cdot f\, [/math]
- U_CfIN_U ● [math] U_{pp} = \dfrac{I}{C \cdot n \cdot f}\, [/math]
Rövid bevezető
rovid_bevezeto_az_elektronikaba.html
- bev_f_T ● [math] f = \dfrac{1}{T}\, [/math]
- bev_G_auto ● [math] G = \dfrac{I}{U} = \dfrac{1,75\ \mathrm{amper}}{12\ \mathrm{volt}} = 0,1458\ \mathrm{siemens}\, [/math]
- bev_G_IU ● [math] G = \dfrac{I}{U}\, [/math]
- bev_I_250_mA ● [math] I = \dfrac{Q}{t} = \dfrac{9000\ \mathrm{coulomb}}{36000\ \mathrm{s}} = 0,25\ \mathrm{amper}\, [/math]
- bev_I_Qt ● [math] I = \dfrac{Q}{t}\, [/math]
- bev_I_RU ● [math] I = \dfrac{U}{R}\, [/math]
- bev_P_12_51 ● [math] P = \dfrac{(12\ \mathrm{volt})^2}{51\ \mathrm{ohm}} = \dfrac{12\ \mathrm{volt} \cdot 12\ \mathrm{volt}}{51\ \dfrac{\mathrm{volt}}{\mathrm{amper}}} = 2,824\ \mathrm{watt}\, [/math]
- bev_P_auto ● [math] P = I \cdot U = 1,75\ \mathrm{amper} \cdot 12\ \mathrm{volt} = 21\ \mathrm{watt}\, [/math]
- bev_P_IU ● [math] P = \dfrac{W}{t} = \dfrac{Q \cdot U}{t} = \dfrac{I \cdot t \cdot U}{t} = I \cdot U\, [/math]
- bev_P_IU_ ● [math] P = I \cdot U\, [/math]
- bev_P_RU ● [math] P = I \cdot U = \left(\dfrac{U}{R}\right)\cdot U = \dfrac{U^2}{R}\, [/math]
- bev_P_tW ● [math] P = \dfrac{W}{t}\, [/math]
- bev_Q_It ● [math] Q = I \cdot t\, [/math]
- bev_R_auto ● [math] R = \dfrac{U}{I} = \dfrac{12\ \mathrm{volt}}{1,75\ \mathrm{amper}} = 6,857\ \mathrm{ohm}\, [/math]
- bev_R_IU ● [math] R = \dfrac{U}{I}\, [/math]
- bev_RU ● [math] \dfrac{U}{R}\, [/math]
- bev_T_50_Hz ● [math] T = \dfrac{1}{f} = \dfrac{1}{50\ \mathrm{Hz}} = 0,02\ \mathrm{s}\, [/math]
- bev_T_f ● [math] T = \dfrac{1}{f}\, [/math]
- bev_U_QW ● [math] U_{AB} = \dfrac{W_{AB}}{Q}\, [/math]
- bev_W_QU ● [math] W = Q \cdot U\, [/math]
- bev_F_Glm ● [math] F = G \cdot \dfrac{m_0 \cdot m_1}{l^2}\, [/math]
- bev_F_epslQ ● [math] F = \dfrac{1}{4 \cdot \pi \cdot \epsilon_0} \cdot \dfrac{Q_0 \cdot Q_1}{l^2}\, [/math]
- bev_W_Glm ● [math] W_{m_0 l} = \left( G \cdot \dfrac{ m_0}{l} \right) \cdot m_1= U \cdot m_1\, [/math]
- bev_W_epslQ ● [math] W_{Q_0 l} = \left( \dfrac{1}{4 \cdot \pi \cdot \epsilon_0} \cdot \dfrac{Q_0}{l} \right) \cdot Q_1= U \cdot Q_1\, [/math]
AdeltaGR_Aflmurho
[math] d = 2 \cdot \sqrt \dfrac{A}{\pi}\, [/math] ● [math] d = 2 \cdot r\, [/math] ●
[math] \delta = \sqrt \dfrac{\rho}{\pi \cdot f \cdot \mu_r \cdot \mu_0}\, [/math] ● [math] \delta = \sqrt \dfrac{1}{\pi \cdot f \cdot \gamma \cdot \mu_r \cdot \mu_0}\, [/math] ●
[math] A_{DC} = A\, [/math] ● [math] A_{DC} = \dfrac{\pi}{4} d^2\, [/math] ● [math] A_{DC} = \pi \cdot r^2\, [/math] ● [math] A_{DC} = a \cdot b\, [/math] ●
[math] A_{AC} = \pi \cdot \delta \cdot( d - \delta )\, [/math] ● [math] A_{AC} = 2 \cdot \delta \cdot ( a + b - 2 \cdot \delta )\, [/math] ●
[math] G_{DC} = \dfrac{A_{DC} \cdot \gamma}{l}\, [/math] ● [math] G_{DC} = \dfrac{A_{DC} }{l\cdot \rho}\, [/math] ● [math] G_{AC} = \dfrac{A_{AC} \cdot \gamma}{l}\, [/math] ● [math] G_{AC} = \dfrac{A_{AC} }{l\cdot \rho}\, [/math] ●
[math] R_{DC} = \dfrac{l}{A_{DC} \cdot \gamma}\, [/math] ●
[math] R_{DC} = \dfrac{l\cdot \rho}{A_{DC} }\, [/math] ●
[math] R_{AC} = \dfrac{l}{A_{AC} \cdot \gamma}\, [/math] ●
[math] R_{AC} = \dfrac{l\cdot \rho}{A_{AC} }\, [/math] ●
[math] A_{DC/AC}= G_{DC/AC}= R_{AC/DC} = \dfrac{A_{DC}}{A_{AC}}\, [/math] ●
α ● C ● T
- alpha_CT__alpha ● [math] \alpha = \dfrac{\dfrac{C_1}{C_0}-1}{T_1 - T_0} \, [/math]
[math] C_1 = C_0 \cdot( 1 + \alpha \cdot( T_1 - T_0 ) ) \, [/math] ● [math] T_1 = T_0 + \dfrac{\dfrac{C_1}{C_0}-1}{ \alpha} \, [/math] ●
α ● GR ● T
[math] G_1 = \dfrac{1}{R_1} \, [/math] ● [math] R_1 = R_0 \cdot( 1 + \alpha \cdot( T_1 - T_0 ) ) \, [/math] ●
[math] G_1 = \dfrac{G_0}{ 1 + \alpha \cdot( T_1 - T_0 )} \, [/math] ● [math] R_1 = \dfrac{1}{G_1} \, [/math] ●
[math] T_1 = T_0 + \dfrac{\dfrac{G_0}{G_1}-1}{ \alpha} \, [/math] ● [math] T_1 = T_0 + \dfrac{G_0 \cdot R_1 - 1}{ \alpha} \, [/math] ● [math] T_1 = T_0 + \dfrac{\dfrac{1}{R_0 \cdot G_1}-1}{ \alpha} \, [/math] ● [math] T_1 = T_0 + \dfrac{\dfrac{R_1}{R_0}-1}{ \alpha} \, [/math] ●
- alpha_GRT_GG ● [math] \alpha = \dfrac{\dfrac{G_0}{G_1}-1}{T_1 - T_0} \, [/math]
- alpha_GRT_GR ● [math] \alpha = \dfrac{G_0 \cdot R_1 - 1}{T_1 - T_0} \, [/math]
- alpha_GRT_RG ● [math] \alpha = \dfrac{\dfrac{1}{R_0 \cdot G_1}-1}{T_1 - T_0} \, [/math]
- alpha_GRT_RR ● [math] \alpha = \dfrac{\dfrac{R_1}{R_0}-1}{T_1 - T_0} \, [/math]
B_DfQ
[math] B = \dfrac{f}{Q}\, [/math] ● [math] B = D \cdot f\, [/math] ●
BDfQR_CLR
[math] D = 0\, [/math] ● [math] D = \dfrac{1}{R_p} \cdot \sqrt{ \dfrac{L}{C} }\, [/math] ● [math] D = R_s \cdot \sqrt{ \dfrac{C}{L} }\, [/math] ● [math] D = \dfrac{1}{R_p} \cdot \sqrt{ \dfrac{L}{C} } + R_s \cdot \sqrt{ \dfrac{C}{L} }\, [/math] ● [math] Q = \dfrac{1}{D}\, [/math] ● [math] f = \dfrac{1}{2 \cdot \pi \cdot f \cdot \sqrt{C \cdot L }} \cdot \sqrt{1 - \dfrac{1}{4 \cdot Q^2}}\, [/math] ● [math] B = D \cdot f\, [/math] ● [math] R_s = 0 \ \Omega \, [/math] ● [math] R_p = \dfrac{1}{D} \cdot \sqrt{ \dfrac{L}{C} }\, [/math] ● [math] R_p = \infin \ \Omega \, [/math] ● [math] R_s = D \cdot \sqrt{ \dfrac{L}{C} }\, [/math] ● [math] Z_0 = \sqrt{ \dfrac{L}{C} }\, [/math] ●
CE_IQUt
[math] C = \dfrac{Q}{U}\, [/math] ● [math] E = \dfrac{Q \cdot U}{2}\, [/math] ● [math] C = \dfrac{I \cdot t}{U}\, [/math] ● [math] E = \dfrac{I \cdot t \cdot U}{2}\, [/math] ●
Cf_LR ( elsőfokú szűrő )
[math] C = \dfrac{L}{R^2}\, [/math] ● [math] f_v = \dfrac{R}{2 \cdot \pi \cdot L}\, [/math] ●
CL_fR ( elsőfokú szűrő )
[math] C = \dfrac{1}{2 \cdot \pi \cdot f_v \cdot R}\, [/math] ● [math] L = \dfrac{R}{2 \cdot \pi \cdot f_v}\, [/math] ●
cos φ
[math] \cos \phi = \dfrac{R}{|Z|}\, [/math] ●
CR_fL ( elsőfokú szűrő )
[math] C = \dfrac{1}{4 \cdot \pi^2 \cdot {f_v}^2 \cdot L}\, [/math] ● [math] R = 2 \cdot \pi \cdot f_v \cdot L\, [/math] ●
CU_EIQt
[math] C = \dfrac{Q^2}{2 \cdot E}\, [/math] ● [math] U = \dfrac{2 \cdot E}{Q}\, [/math] ● [math] C = \dfrac{\left(I \cdot t\right)^2}{2 \cdot E}\, [/math] ● [math] U = \dfrac{2 \cdot E}{I \cdot t}\, [/math] ●
CYZ_fL
[math] C = \dfrac{1}{ \left( 2 \cdot \pi \cdot f \right)^2 \cdot L}\, [/math] ● [math] Y_L = \dfrac{-1}{ 2 \cdot \pi \cdot f \cdot L} \cdot \mathrm{i} = -\sqrt{\dfrac{C}{L}} \cdot \mathrm{i}\, [/math] ● [math] Z_L = 2 \cdot \pi \cdot f \cdot L\cdot \mathrm{i} = \sqrt{\dfrac{L}{C}} \cdot \mathrm{i} \, [/math] ●
DQ_Bf
[math] D = \dfrac{B}{f}\, [/math] ● [math] Q = \dfrac{f}{B}\, [/math] ●
DQRp_CfRs
[math] D = \tan \left( \delta \right) = 2 \cdot \pi \cdot f \cdot C \cdot R_s\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = \dfrac{1}{2 \cdot \pi \cdot f \cdot C \cdot R_s}\, [/math] ● [math] R_p = \dfrac{1}{{\left(2 \cdot \pi \cdot f \cdot C\right)}^2 \cdot R_s }\, [/math] ●
DQRp_fLRs
[math] D = \tan \left( \delta \right) = \dfrac{R_s}{2 \cdot \pi \cdot f \cdot L}\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = \dfrac{2 \cdot \pi \cdot f \cdot L}{R_s}\, [/math] ● [math] R_p = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2 }{R_s }\, [/math] ●
DQRs_CfRp
[math] D = \tan \left( \delta \right) = \dfrac{1}{2 \cdot \pi \cdot f \cdot C \cdot R_p }\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = 2 \cdot \pi \cdot f \cdot C \cdot R_p\, [/math] ● [math] R_s = \dfrac{1}{{\left(2 \cdot \pi \cdot f \cdot C\right)}^2 \cdot R_p }\, [/math] ●
DQRs_fLRp
[math] D = \tan \left( \delta \right) = \dfrac{2 \cdot \pi \cdot f \cdot L}{ R_p }\, [/math] ● [math] \delta = \mathrm{atan} \left( D \right)\, [/math] ● [math] Q = \dfrac{1}{D} = \dfrac{R_p}{2 \cdot \pi \cdot f \cdot L }\, [/math] ● [math] R_s = \dfrac{{\left(2 \cdot \pi \cdot f \cdot L\right)}^2}{R_p }\, [/math] ●
E ● l ● U
[math] E = \dfrac{U}{l}\, [/math] ● [math] l = \dfrac{U}{E}\, [/math] ● [math] U = E \cdot l\, [/math] ●
EU_CIQt
[math] E = \dfrac{Q^2}{2 \cdot C}\, [/math] ● [math] U = \dfrac{Q}{C}\, [/math] ● [math] E = \dfrac{\left(I \cdot t \right)^2}{2 \cdot C}\, [/math] ● [math] U = \dfrac{I \cdot t}{C}\, [/math] ●
f_BDQ
[math] f = \dfrac{B}{D}\, [/math] ● [math] f = B \cdot Q\, [/math] ●
fL_CR ( elsőfokú szűrő )
[math] f_v = \dfrac{1}{2 \cdot \pi \cdot\ C \cdot R}\, [/math] ● [math] L = C \cdot R^2\, [/math] ●
fR_CL ( elsőfokú szűrő )
[math] f_v = \dfrac{1}{2 \cdot \pi \cdot\ \sqrt{C \cdot L}}\, [/math] ● [math] R = \sqrt{\dfrac{L}{C}}\, [/math] ●
G_gm
[math] G = g \cdot m\, [/math] ●
Gm_grhoV
[math] V = \dfrac{\pi \cdot d^3}{6}\, [/math] ● [math] V = \dfrac{4 \cdot \pi \cdot r^3}{3}\, [/math] ●
[math] V = A \cdot l\, [/math] ● [math] V = \dfrac{\pi \cdot d^2 \cdot l}{4}\, [/math] ● [math] V = \pi \cdot r^2 \cdot l\, [/math] ●
[math] V = a \cdot b \cdot c\, [/math] ●
[math] m = \rho \cdot V\, [/math] ●
[math] G = g \cdot m\, [/math] ●
h_Rbt
[math] h = R_b \cdot t\, [/math] ●
I_AJ
[math] I = A \cdot J\, [/math] ● [math] I = \dfrac{\pi \cdot d^2 \cdot J}{4}\, [/math] ● [math] I = \pi \cdot r^2 \cdot J\, [/math] ●
[math] I = \dfrac{A}{J^{-1}}\, [/math] ● [math] I = \dfrac{\pi \cdot d^2}{4 \cdot J^{-1}}\, [/math] ● [math] I = \dfrac{\pi \cdot r^2}{J^{-1}}\, [/math] ●
J_AI
[math] J = \dfrac{I}{A}\, [/math] ● [math] J = \dfrac{4 \cdot I}{\pi \cdot d^2}\, [/math] ● [math] J = \dfrac{I}{\pi \cdot r^2}\, [/math] ●
[math] J^{-1} = \dfrac{A}{I}\, [/math] ● [math] J^{-1} = \dfrac{\pi \cdot d^2}{4 \cdot I}\, [/math] ● [math] J^{-1} = \dfrac{\pi \cdot r^2}{I}\, [/math] ●
LR_Cf ( elsőfokú szűrő )
[math] L = \dfrac{1}{4 \cdot \pi^2 \cdot C \cdot {f_v}^2}\, [/math] ● [math] R = \dfrac{1}{2 \cdot \pi \cdot C \cdot f_v}\, [/math] ●
l_RRl
[math] l = \dfrac{R}{R'} = \dfrac{A \cdot R}{\rho}\, [/math] ●
l_tv
[math] l = t \cdot v\, [/math] ●
m ● ρ ● V
[math] m = \rho \cdot V\, [/math] ● [math] \rho = \dfrac{m}{V}\, [/math] ● [math] V = \dfrac{m}{\rho}\, [/math] ●
P_tW
[math] P = \dfrac{W}{t}\, [/math] ●
Rb_ht
[math] R_b = \dfrac{h}{t}\, [/math] ●
Rl_lR
[math] R' = \dfrac{R}{l} = \dfrac{\rho}{A}\, [/math] ●
R_lRl
[math] R = l \cdot R' = \dfrac{l \cdot \rho}{A}\, [/math] ●
t_hRb
[math] t = \dfrac{h}{R_b}\, [/math] ●
t_IPUW
[math] t = \dfrac{W}{P}\, [/math] ● [math] t = \dfrac{W}{I \cdot U}\, [/math] ●
t_lv
[math] t = \dfrac{l}{v}\, [/math] ●
V_abcdrl
[math] V = \dfrac{\pi \cdot d^3}{6}\, [/math] ● [math] V = \dfrac{4 \cdot \pi \cdot r^3}{3}\, [/math] ●
[math] V = A \cdot l\, [/math] ● [math] V = \dfrac{\pi \cdot d^2 \cdot l}{4}\, [/math] ● [math] V = \pi \cdot r^2 \cdot l\, [/math] ●
[math] V = a \cdot b \cdot c\, [/math] ●
v_lt
[math] v = \dfrac{l}{t}\, [/math] ●
W_IPtU
[math] W = P \cdot t\, [/math] ● [math] W = I \cdot U \cdot t\, [/math] ●
Belső ellenállás
[math] R_b = \dfrac{(U_{k2}-U_{k1})\cdot R_{k1}}{U_{k1}\cdot(1-\dfrac{U_{k2}\cdot R_{k1}}{U_{k1}\cdot R_{k2}})} [/math] ●