„Logaritmikus egységek” változatai közötti eltérés

Innen: HamWiki
Ugrás a navigációhoz Ugrás a kereséshez
(Elgépelés, ábra javítás)
 
(29 közbenső módosítás, amit 4 másik szerkesztő végzett, nincs mutatva)
7. sor: 7. sor:
 
== Lineáris és logaritmikus ábrázolás ==
 
== Lineáris és logaritmikus ábrázolás ==
  
A fenti problémára a megoldás a logaritmikus ábrázolás. Ekkor az adott tengelyen a 10-szer akkora érték csak 1 egységnyi elmozdulást jelent, a 100-szoros 2 egységnyit, az 100-szeres 3 egységnyit, ...
+
A fenti problémára a megoldás a logaritmikus ábrázolás. Ekkor az adott tengelyen a 10-szer akkora érték csak 1 egységnyi elmozdulást jelent, a 100-szoros 2 egységnyit, az 1000-szeres 3 egységnyit, ...
  
 
Alább látható egy jó hangfrekvenciás erősítő átviteli karakterisztikája. Először lineáris grafikonon ábrázolva.
 
Alább látható egy jó hangfrekvenciás erősítő átviteli karakterisztikája. Először lineáris grafikonon ábrázolva.
13. sor: 13. sor:
 
<gnuplot>
 
<gnuplot>
 
   set output 'atviteli_karakterisztika_linearis_pelda.png'
 
   set output 'atviteli_karakterisztika_linearis_pelda.png'
   set size 1.2, 0.4
+
  set terminal png size 600,200
 +
   set size 1,1
 +
  set grid x
 
   set yrange [5:25]
 
   set yrange [5:25]
 
   set xlabel "Frekvencia (Hz)"
 
   set xlabel "Frekvencia (Hz)"
   set ylabel "Erositesi arány"
+
   set ylabel "Erositesi arany"
 +
  set samples 1000
  
 
   Xc1(x) = 1/(6.283*x*10e-6)
 
   Xc1(x) = 1/(6.283*x*10e-6)
29. sor: 32. sor:
 
<gnuplot>
 
<gnuplot>
 
   set output 'atviteli_karakterisztika_logaritmikus_pelda.png'
 
   set output 'atviteli_karakterisztika_logaritmikus_pelda.png'
   set size 1.2, 0.4
+
   set terminal png size 600,200
 +
  set size 1,1
 +
  set grid
 +
  set xtics (2,5,10,20,50,100,200,500,1000,2000,5000,10000,20000,50000)
 
   set yrange [5:25]
 
   set yrange [5:25]
 
   set xlabel "Frekvencia (Hz)"
 
   set xlabel "Frekvencia (Hz)"
39. sor: 45. sor:
 
</gnuplot>
 
</gnuplot>
  
== A logaritmikus ''tér'' használata ==
+
A logaritmikus léptékű ábrához még annyit érdemes megjegyezni, hogy a [[dekád]]on belül az 1/3 és 2/3 távolságban rendre a 2,15 és 4,64 érték található. Gyakorlatban ha egy szélessávú eszköz átviteli karakterisztikát kézzel ábrázoljuk, akkor a dekádot (pl. 1 és 10 közt) kettő vonallal három egyenlő részre osztjuk és a két vonal rendre a 2 és 5 értéket fogja ábrázolni.
  
A logaritmikus teret sok okból szeretjük. Egyrészt nincsenek benne olyan bődületes számok, mint a lineáris tér esetén. Ugyanakkor az arányokat szemléletesebben kifejezi, mivel a logaritmikus térben 200 mW és 800 mW közt ugyanakkora a különbség, mint 20 W és 80 W között.
+
== A logaritmikus skála használata ==
 +
 
 +
A logaritmikus skálát sok okból szeretjük. Egyrészt nincsenek benne olyan bődületes számok, mint a lineáris tér esetén. Ugyanakkor az arányokat szemléletesebben kifejezi, mivel a logaritmikus térben 200 mW és 800 mW közt ugyanakkora a különbség, mint 20 W és 80 W között.
  
 
A logaritmikus térben végzett műveletek és lineáris térben gyakorolt hatásuk:
 
A logaritmikus térben végzett műveletek és lineáris térben gyakorolt hatásuk:
50. sor: 58. sor:
 
* Ha a logaritmikus érték előjelét megfordítjuk, akkor lineáris térben 10<sup>X</sup> alakban felírt szám 10<sup>-X</sup> -re változik.
 
* Ha a logaritmikus érték előjelét megfordítjuk, akkor lineáris térben 10<sup>X</sup> alakban felírt szám 10<sup>-X</sup> -re változik.
  
Tehát elmondható, hogy a logaritmikus tér ''közelebb hozza'' a nagy értékeket egymáshoz, az értékeknek nem a nagyságukra, hanem arányukra koncentrál.
+
Tehát elmondható, hogy a logaritmikus skála ''közelebb hozza'' a nagy értékeket egymáshoz, az értékeknek nem a nagyságukra, hanem arányukra koncentrál.
 
A lineáris térben végzett szorzás és osztás műveletek logaritmikus térben összeadásra illetve kivonásra cserélődnek, a hatványozás és gyökvonás pedig szorzásra illetve osztásra.
 
A lineáris térben végzett szorzás és osztás műveletek logaritmikus térben összeadásra illetve kivonásra cserélődnek, a hatványozás és gyökvonás pedig szorzásra illetve osztásra.
 +
 +
Ezen alapult a ma már nem használatos számolóeszköz, a [http://hu.wikipedia.org/wiki/Logarl%C3%A9c logarléc].
  
 
== A decibel ==
 
== A decibel ==
 +
 +
<szamolo sor=4 oszlop=25 jobb>Pbe = 1 milli;Pki = 5;;AdB = 10*log10(Pki/Pbe)</szamolo>
  
 
A logaritmikus tér legismertebb felhasználási területe a '''decibel (dB)''' skála.
 
A logaritmikus tér legismertebb felhasználási területe a '''decibel (dB)''' skála.
70. sor: 82. sor:
  
 
=== Decibel feszültségre ===
 
=== Decibel feszültségre ===
 +
 +
<szamolo sor=4 oszlop=25 jobb>Ube = 100 milli;Uki = 50 milli;;AdB = 20*log10(Uki/Ube)</szamolo>
  
 
Tekintettel arra, hogy <math>P=U*I=U*(U/R)=U^2/R</math>, amiből átrendezéssel <math>U=\sqrt{P*R}</math> képlet jön ki. (U a feszültség, I az áram, R az ellenállás, P a teljesítmény).
 
Tekintettel arra, hogy <math>P=U*I=U*(U/R)=U^2/R</math>, amiből átrendezéssel <math>U=\sqrt{P*R}</math> képlet jön ki. (U a feszültség, I az áram, R az ellenállás, P a teljesítmény).
82. sor: 96. sor:
  
 
{| border="1"
 
{| border="1"
 +
|- style="background: lightgray"
 
! dB !! teljesítményarány || feszültségarány
 
! dB !! teljesítményarány || feszültségarány
 
|-
 
|-
92. sor: 107. sor:
 
| 10 dB || 10 || <math>\sqrt{10} = 3,16</math>
 
| 10 dB || 10 || <math>\sqrt{10} = 3,16</math>
 
|-
 
|-
| 100 dB || 100 || 10
+
| 20 dB || 100 || 10
|-
+
|- style="background: lightgray"
 
! colspan=3 | Negatív értékekre
 
! colspan=3 | Negatív értékekre
 
|-
 
|-
102. sor: 117. sor:
 
| -10 dB || 0,1 || <math>1/\sqrt{10} = 0,316</math>
 
| -10 dB || 0,1 || <math>1/\sqrt{10} = 0,316</math>
 
|-
 
|-
| -100 dB || 1/100 || 1/10
+
| -20 dB || 1/100 || 1/10
 
|}
 
|}
  
Néhány jó ujjgyakorlat a fentiek alapján:
+
 
 +
;Néhány jó ujjgyakorlat a fentiek alapján:
  
 
{| border="1"
 
{| border="1"
 +
|- style="background: lightgray"
 
! dB !! teljesítményarány || feszültségarány
 
! dB !! teljesítményarány || feszültségarány
 
|-
 
|-
131. sor: 148. sor:
 
A címben szereplő értékek dB-es arányszámmal ellátott mértékegységek.
 
A címben szereplő értékek dB-es arányszámmal ellátott mértékegységek.
  
* a dBm alapmértékegysége az a teljesítmény, amely 1 mW-ot jelent 600 ohm-ra viszonyítva. Az Ohm-törvény értelmében <math>U=\sqrt{P*R}=\sqrt{0.001 W *600}=\sqrt{0,6}=0,7746 V</math>. A dBm származéka a dBu, amely terhelőimpedanciától függetlenül a 0,7746 V-ot veszi alapegységnek. Hang jelszinteknél használatos mértékegység.
+
* a dBm alapmértékegysége az a teljesítmény, amely 1 mW-ot jelent 600 ohm-ra viszonyítva. Az [[Ohm-törvény]] értelmében <math>U=\sqrt{P\cdot R}=\sqrt{0,001
 +
~{\rm W} \cdot 600~\Omega}=\sqrt{0,6}~{\rm V}=0,7746~{\rm V}</math>. A dBm származéka a dBu, amely terhelőimpedanciától függetlenül a 0,7746 V-ot veszi alapegységnek. Hang jelszinteknél használatos mértékegység.
 
* a dBµV az 1 mikrovoltra vonatkoztatott dB érték. Rádiófrekvencián ezt a mértékegységet használjuk. Alapértelmezetten 50 ohm-os impedanciára vonatkoztatva. A dBmV pedig az 1 mV-ra vonatkoztatott érték - rádiófrekvencián használatos, nagyobb jelek esetén. 1 dBmV = 60 dBµV. Ugyanígy a dBV-ot is alkalmazhatjuk, ahol az alapérték az 1 V.
 
* a dBµV az 1 mikrovoltra vonatkoztatott dB érték. Rádiófrekvencián ezt a mértékegységet használjuk. Alapértelmezetten 50 ohm-os impedanciára vonatkoztatva. A dBmV pedig az 1 mV-ra vonatkoztatott érték - rádiófrekvencián használatos, nagyobb jelek esetén. 1 dBmV = 60 dBµV. Ugyanígy a dBV-ot is alkalmazhatjuk, ahol az alapérték az 1 V.
  
166. sor: 184. sor:
 
'''Megoldás:''' a csillapítást jelöljük negatív előjellel. Ekkor az eredő erősítés A=-8 dB + 25 dB = 17 dB. A jelszint pedig: U<sup>dB</sup>=17+3=20 dBµV-os lesz. Ezt az értéket a decibelskáláról visszaszámolva 10 µV-ot kapunk.
 
'''Megoldás:''' a csillapítást jelöljük negatív előjellel. Ekkor az eredő erősítés A=-8 dB + 25 dB = 17 dB. A jelszint pedig: U<sup>dB</sup>=17+3=20 dBµV-os lesz. Ezt az értéket a decibelskáláról visszaszámolva 10 µV-ot kapunk.
  
'''2. Példa:''' Egy 7 dBW-os rádióvégfokra rákötünk 6 dB csillapítású kábelt, majd 8 dB nyereségű antennára vezetjük. Mekkora [[ERP]]-vel fog sugározni az antenna?
+
'''2. Példa:''' Egy 7 dBW-os rádióvégfokra rákötünk 4 dB csillapítású kábelt, majd 9 dB nyereségű antennára vezetjük. Mekkora [[ERP]]-vel fog sugározni az antenna?
  
 
'''Megoldás:''' P<sup>dB</sup>=7 dBW-4 dB + 9 dB = 12 dBW. Hogy kézzelfogható legyen, valós értékre is átszámolhatjuk. 12 dBW = 3+3+3+3 dB, tehát 2*2*2*2 = 16 W. Tehát a kérdéses ERP 16 W-ra jött ki.
 
'''Megoldás:''' P<sup>dB</sup>=7 dBW-4 dB + 9 dB = 12 dBW. Hogy kézzelfogható legyen, valós értékre is átszámolhatjuk. 12 dBW = 3+3+3+3 dB, tehát 2*2*2*2 = 16 W. Tehát a kérdéses ERP 16 W-ra jött ki.
173. sor: 191. sor:
  
 
A rádiókon az S mérő jelszinteket mutat. De mekkora jelszintnek felel meg az adott S érték?
 
A rádiókon az S mérő jelszinteket mutat. De mekkora jelszintnek felel meg az adott S érték?
 +
 +
<szamolo jobb sor=9 oszlop=43>S = 5;plusz_dB = 0;;;U_RH_dBµV = 10+(S-5)*6+plusz_dB;U_RH_volt = 1 mikro*exp10(U_RH_dBµV/20);;U_URH_dBµV = -10+(S-5)*6+plusz_dB;U_URH_volt = 1 mikro*exp10(U_URH_dBµV/20)</szamolo>
  
 
{| border=1 style="text-align: center"
 
{| border=1 style="text-align: center"
202. sor: 222. sor:
 
|}
 
|}
  
A fenti táblázat alapján látható, hogy az S értékek 6 dB-enként vannak felosztva,
+
Alternatív meghatározás <!-- HA5LQ tananyaga --> szerint '''rövidhullámon S9 = 50 μV, URH-n 5 μV''', valamint S(n+1) = 2 * S(n). Eme két definíció értékei között kevesebb, mint egy százalék eltérés van. Továbbá dBm-ben kifejezve '''az S5-ös jelszint = -97 dBm RH-n és -117 dBm URH-n'''.
azaz két S fok között a jelfeszültség kétszeresére nő (ami által a teljesítmény
 
a négyszeresére, ami pedig éppen a 6 dB).
 
  
Látható továbbá hogy [[rövidhullám]]on az S5-ös jelszint 3 mikrovoltos
+
A fenti táblázat alapján látható, hogy az S értékek 6 dB-enként vannak felosztva, azaz két S fok között a jelfeszültség kétszeresére nő (ami által a teljesítmény a négyszeresére, ami pedig éppen a 6 dB). Látható továbbá hogy [[rövidhullám]]on az S5-ös jelszint 3 mikrovoltos bemenő jelet jelent. [[URH]]-n a kisebb zajszint miatt érzékenyebb vevők építhetők, így ezt az értéket az S mérő 20 dB-lel lejjebb, 0,3 mikrovoltnál mutatja.
bemenő jelet jelent.
 
[[URH]]-n a kisebb zajszint miatt érzékenyebb vevők építhetők, így ezt az értéket az S mérő 20 dB-lel lejjebb, 0,3 mikrovoltnál mutatja.
 
  
 
Ez azt is jelenti, hogy amennyiben 6 dB-lel jobb nyereségű antennával forgalmazunk, az mindössze 1 S értéknyit javít a vételen. Azonban ne felejtsük el, amikor S1-et alig akarja elérni a jel, akkor az a 6 dB igen sokat számít.
 
Ez azt is jelenti, hogy amennyiben 6 dB-lel jobb nyereségű antennával forgalmazunk, az mindössze 1 S értéknyit javít a vételen. Azonban ne felejtsük el, amikor S1-et alig akarja elérni a jel, akkor az a 6 dB igen sokat számít.
  
Továbbá az előző szakasz példáján látszik, hogy 5 W kimenőteljesítmény 7 dBW, amennyiben 6 dB-nyi adóteljesítmény növelést szeretnénk, akkor az 13 dBW, azaz 10*2 = 20 W-tal kell adni.
+
Az előző szakasz példáján látszik, hogy 5 W kimenőteljesítmény 7 dBW, amennyiben 6 dB-nyi adóteljesítmény növelést szeretnénk, akkor az 13 dBW, azaz 10*2 = 20 W-tal kell adni.
 +
 
 +
== Rádiófrekvenciás eszközök jelszintjei ==
 +
 
 +
{| border="1"
 +
! Felhasználás || Vételjellemzés || Jelszint
 +
|-
 +
| rowspan="3" | Rádióamatőr RH || S1 || -14 dBµV (0,2 µV)
 +
|-
 +
| S5 || 10 dBµV (3 µV)
 +
|-
 +
| S9 || 34 dBµV (50 µV)
 +
|-
 +
| rowspan="3" | Rádióamatőr URH || S1 || -34 dBµV (0,02 µV)
 +
|-
 +
| S5 || -10 dBµV (0,3 µV)
 +
|-
 +
| S9 || 14 dBµV (5 µV)
 +
|-
 +
| rowspan="5" | CCIR FM rádió || Igen gyenge hang || 20-26 dBµV (10-20 µV)
 +
|-
 +
| Hullámzó hang || 34-40 dBµV (50-100 µV)
 +
|-
 +
| Stabil mono hang || 40-46 dBµV (100-200 µV)
 +
|-
 +
| Jó minőségű, de monó hang || 46-52 dBµV (200-400 µV)
 +
|-
 +
| Sztereo URH hang || 54 dBµV (500 µV)
 +
|-
 +
| rowspan="5" | Analóg TV || Szinkronjel nyomok || 20-26 dBµV (10-20 µV)
 +
|-
 +
| Szinkronizált zajos kép || 34-40 dBµV (50-100 µV)
 +
|-
 +
| Kontrasztos, stabil de zajos kép || 40-46 dBµV (100-200 µV)
 +
|-
 +
| Zajmentes fekete-fehér<br>vagy zajos színes kép || 46-52 dBµV (200-400 µV)
 +
|-
 +
| Zajmentes színes kép || 54 dBµV (500 µV)
 +
|}
 +
 
 +
A hangfrekvenciás átjátszókábel esetén pedig a 0 dBm (0,775 V) a referencia feszültség. Eredete a vezetékes távbeszélőtechnikában alkalmazott 600 ohmon disszipálódó 1 mW teljesítményre vezetődik vissza.
 +
 
 +
== neper ==
 +
 
 +
Neper ( John Napier of Merchiston ) egyrészt nem tízes, hanem természetes alapú logaritmust; másrészt nem teljesítmény-, hanem amplitúdó- ( feszültség ) arányt használt. A mértékegység neve neper, jele Np.
 +
 
 +
<math> A = \ln \frac{U_2}{U_1}\ [Np] </math>
 +
 
 +
<math> A = \frac{1}{2} \cdot \ln \frac{P_2}{P_1}\ [Np] </math>
 +
 
 +
== bit ==
  
 
== Logaritmikus értékek nem rádiótechnikai alkalmazásai ==
 
== Logaritmikus értékek nem rádiótechnikai alkalmazásai ==
218. sor: 284. sor:
 
* [http://hu.wikipedia.org/wiki/Richter-sk%C3%A1la Richter skála] - földrengések erőssége
 
* [http://hu.wikipedia.org/wiki/Richter-sk%C3%A1la Richter skála] - földrengések erőssége
 
* [http://hu.wikipedia.org/wiki/Magnit%C3%BAd%C3%B3 magnitúdó] - csillagok fényessége
 
* [http://hu.wikipedia.org/wiki/Magnit%C3%BAd%C3%B3 magnitúdó] - csillagok fényessége
* [http://hu.wikipedia.org/wiki/Okt%C3%A1v oktáv] - kétszeres frekvenciaarány
+
* [http://hu.wikipedia.org/wiki/PH pH] - a víz 7-es pH értékű, alatta savas, felette lugos.
  
 
== Külső hivatkozások ==
 
== Külső hivatkozások ==
 
*[http://www.analog.com/Analog_Root/static/techSupport/designTools/interactiveTools/dbconvert/dbconvert.html V<sub>peak</sub>, V<sub>RMS</sub>, teljesítmény, dBm, dBu, dBV átszámítás]
 
*[http://www.analog.com/Analog_Root/static/techSupport/designTools/interactiveTools/dbconvert/dbconvert.html V<sub>peak</sub>, V<sub>RMS</sub>, teljesítmény, dBm, dBu, dBV átszámítás]
 +
 +
 +
[[Kategória:Műszaki alapfogalmak]]

A lap jelenlegi, 2013. október 13., 20:27-kori változata

Az embereknek természetes a lineáris ábrázolás. Ez azt jelenti, hogy ami 10-szer messzebb van, azt 10 egység távolságra rajzolom, ami 100 egység távolságra, azt 100 egység távolságra rajzolom.

Műszaki gyakorlatban azonban ez nem mindig praktikus. Talán a legszemléletesebb érv az értéktartomány tágassága. Elegendő arra gondolni, hogy egyetlen grafikonon szeretnénk ábrázolni egy erősítő esetén például egy olyan görbét, amely vízszintes tengelyére a bemenő amplitúdót szeretnénk ábrázolni 1 mikrovolt és 10 millivolt közt, a függőleges tengelyén pedig a kimenetét 1 millivolt és 10 volt közt.

Látható, hogy az ábrán a kis értékek nem lesznek láthatóak, a nagy értékek pedig felesleges részletességgel láthatóak. Ugyanis 1 mV és 10 mV közt jobban érdekel minket a különbség, mint 980 mV és 990 mV közt.

Lineáris és logaritmikus ábrázolás

A fenti problémára a megoldás a logaritmikus ábrázolás. Ekkor az adott tengelyen a 10-szer akkora érték csak 1 egységnyi elmozdulást jelent, a 100-szoros 2 egységnyit, az 1000-szeres 3 egységnyit, ...

Alább látható egy jó hangfrekvenciás erősítő átviteli karakterisztikája. Először lineáris grafikonon ábrázolva.

Gnuplot Plot

Bár ebből az ábrából pontosan leolvashatjuk (felesleges pontossággal), hogy 20 kHz-nél hol metszi a -3 dB-s vonalat az átviteli karakterisztika, de a 20 Hz-es alsó frekvenciát nem látjuk, illetve a közbenső viselkedése sem szemléletes a fenti erősítőnek.

Amennyiben logaritmikus skálán ábrázoljuk, az ábrából szakavatottak azonnal látják, hogy 20 Hz és 20 kHz közt jó erősítőhöz méltóan viselkedik.

Gnuplot Plot

A logaritmikus léptékű ábrához még annyit érdemes megjegyezni, hogy a dekádon belül az 1/3 és 2/3 távolságban rendre a 2,15 és 4,64 érték található. Gyakorlatban ha egy szélessávú eszköz átviteli karakterisztikát kézzel ábrázoljuk, akkor a dekádot (pl. 1 és 10 közt) kettő vonallal három egyenlő részre osztjuk és a két vonal rendre a 2 és 5 értéket fogja ábrázolni.

A logaritmikus skála használata

A logaritmikus skálát sok okból szeretjük. Egyrészt nincsenek benne olyan bődületes számok, mint a lineáris tér esetén. Ugyanakkor az arányokat szemléletesebben kifejezi, mivel a logaritmikus térben 200 mW és 800 mW közt ugyanakkora a különbség, mint 20 W és 80 W között.

A logaritmikus térben végzett műveletek és lineáris térben gyakorolt hatásuk:

  • Két logaritmus érték összeadása a lineáris térbeli szorzásnak felel meg.
  • Két logaritmikus érték szorzása, lineáris térben hatványozásnak (számX) felel meg.
  • Két logaritmikus érték osztása pedig a számlálóban levő szám nevezőedik gyökét adja. Például ha a logaritmikus számot elosztjuk 2-vel, az a lineáris térben a négyzetgyökvonás művelete.
  • Ha a logaritmikus érték előjelét megfordítjuk, akkor lineáris térben 10X alakban felírt szám 10-X -re változik.

Tehát elmondható, hogy a logaritmikus skála közelebb hozza a nagy értékeket egymáshoz, az értékeknek nem a nagyságukra, hanem arányukra koncentrál. A lineáris térben végzett szorzás és osztás műveletek logaritmikus térben összeadásra illetve kivonásra cserélődnek, a hatványozás és gyökvonás pedig szorzásra illetve osztásra.

Ezen alapult a ma már nem használatos számolóeszköz, a logarléc.

A decibel

<szamolo sor=4 oszlop=25 jobb>Pbe = 1 milli;Pki = 5;;AdB = 10*log10(Pki/Pbe)</szamolo>

A logaritmikus tér legismertebb felhasználási területe a decibel (dB) skála. Az alapegység a bel (B), csak ez ritkán használatos. A bel-t Alexander Graham Bell amerikai mérnökről és feltalálóról nevezték el. Eredetileg telefonkábelek csillapításának jellemzésére használták, de később a használata más területen is elterjedt.

1 B két (általában teljesítmény jellegű) érték 10-szeres arányát jelenti.

A decibel tehát önmagában pusztán egy arányt jelöl. Például a 3 dB teljesítménynövekedés azt jelenti, hogy valaminek a teljesítménye duplájára nőtt. A -3 dB pedig azt, hogy a teljesítmény a viszonyításhoz képest felére csökkent.

Képlettel: A = 10*log(P2/P1), ahol A a logaritmikus érték, P2 a teljesítmény, amit P1-hez viszonyítunk.

Decibel feszültségre

<szamolo sor=4 oszlop=25 jobb>Ube = 100 milli;Uki = 50 milli;;AdB = 20*log10(Uki/Ube)</szamolo>

Tekintettel arra, hogy [math]P=U*I=U*(U/R)=U^2/R[/math], amiből átrendezéssel [math]U=\sqrt{P*R}[/math] képlet jön ki. (U a feszültség, I az áram, R az ellenállás, P a teljesítmény).

Ez azt jelenti, hogy négyszeres teljesítménynövekedés esetén ugyanazon terhelés kapcsain dupla akkora feszültség jelentkezik, 100-szoros teljesítmény növekedéskor pedig csak 10-szeres feszültség.

Képlettel: A = 20*log(U2/U1), ahol A a logaritmikus érték, U2 a feszültség, amit U1-hez viszonyítunk.

Megjegyzés: ugyanabban az esetben a fenti, teljesítményre vonatkoztatott A arány és a feszültségre vonatkoztatott A értéke ugyanaz az érték.

Néhány dB érték teljesítményre és feszültségre

dB teljesítményarány feszültségarány
0 dB 1 1
3 dB 2 [math]\sqrt{2} = 1,414[/math]
6 dB (3+3) 4 (2*2) 2
10 dB 10 [math]\sqrt{10} = 3,16[/math]
20 dB 100 10
Negatív értékekre
-3 dB 1/2 [math]1/\sqrt{2} = 0,707[/math]
-6 dB (-3 + -3) 1/4 (1/2*1/2) 1/2
-10 dB 0,1 [math]1/\sqrt{10} = 0,316[/math]
-20 dB 1/100 1/10


Néhány jó ujjgyakorlat a fentiek alapján
dB teljesítményarány feszültségarány
6 dB = 3+3 2*2=4 2
7 dB = 10-3 10/2 = 5 2,23 (3.16/1,41)
12 dB = 3+3+3+3 4*4 = 16 4
13 dB = 10+3 10*2 4,47 (3,16*1,414)
20 dB = 10+10 10*10 = 100 10
30 dB = 20+10 100*10 = 1000 31,6
36 dB = 20+10+3+3 100*10*2*2 = 4000 63,2
-36 dB = -20 + -10 + -3 + -3 1/100*1/10*1/2*1/2 = 1/4000 = 0.00025 1/63,2 = 0,0158

dBm (és dBu), dBµV, dBmV

A címben szereplő értékek dB-es arányszámmal ellátott mértékegységek.

  • a dBm alapmértékegysége az a teljesítmény, amely 1 mW-ot jelent 600 ohm-ra viszonyítva. Az Ohm-törvény értelmében [math]U=\sqrt{P\cdot R}=\sqrt{0,001 ~{\rm W} \cdot 600~\Omega}=\sqrt{0,6}~{\rm V}=0,7746~{\rm V}[/math]. A dBm származéka a dBu, amely terhelőimpedanciától függetlenül a 0,7746 V-ot veszi alapegységnek. Hang jelszinteknél használatos mértékegység.
  • a dBµV az 1 mikrovoltra vonatkoztatott dB érték. Rádiófrekvencián ezt a mértékegységet használjuk. Alapértelmezetten 50 ohm-os impedanciára vonatkoztatva. A dBmV pedig az 1 mV-ra vonatkoztatott érték - rádiófrekvencián használatos, nagyobb jelek esetén. 1 dBmV = 60 dBµV. Ugyanígy a dBV-ot is alkalmazhatjuk, ahol az alapérték az 1 V.


Feszültség dBu dBV dBmV dBµV
1 mV -57,8 dBu -60 dBV 0 dBmV 60 dBµV
10 mV -37,8 dBu -40 dBV 20 dBmV 80 dBµV
100 mV -17,8 dBu -20 dBV 40 dBmV 100 dBµV
1 V 2,2 dBu 0 dBV 60 dBmV 120 dBµV
10 V 22,2 dBu 20 dBV 80 dBmV 140 dBµV

Ahogy létezik dBV (dBmV, dBµV), ugyanúgy használható a dBW (dBmW, dBµW) is. Ez esetben a viszonyítási alap az 1 W (1 mW, 1µW).

Például:

  • 5 W a fenti táblázat alapján a 10 W fele, azaz 10-3= 7 dBW.
  • 20 W a 10 W duplája, azaz 13 dBW
  • 100 W a 10 W 10-szerese, azaz 20 dBW.
  • A 0,5 W pedig az 1 W fele, azaz -3 dBW

Gyakorlati felhasználás

1. Példa: Egy 3 dBµV-ot szolgáltató antenna jelét 8 dB veszteségű kábelen hozzuk le, de előtte az antennánál elhelyezünk egy 25 dB-es előerősítőt. Mekkora jelszint lesz a koaxkábel alsó végén?

Megoldás: a csillapítást jelöljük negatív előjellel. Ekkor az eredő erősítés A=-8 dB + 25 dB = 17 dB. A jelszint pedig: UdB=17+3=20 dBµV-os lesz. Ezt az értéket a decibelskáláról visszaszámolva 10 µV-ot kapunk.

2. Példa: Egy 7 dBW-os rádióvégfokra rákötünk 4 dB csillapítású kábelt, majd 9 dB nyereségű antennára vezetjük. Mekkora ERP-vel fog sugározni az antenna?

Megoldás: PdB=7 dBW-4 dB + 9 dB = 12 dBW. Hogy kézzelfogható legyen, valós értékre is átszámolhatjuk. 12 dBW = 3+3+3+3 dB, tehát 2*2*2*2 = 16 W. Tehát a kérdéses ERP 16 W-ra jött ki.

Rádió S értékei

A rádiókon az S mérő jelszinteket mutat. De mekkora jelszintnek felel meg az adott S érték?

<szamolo jobb sor=9 oszlop=43>S = 5;plusz_dB = 0;;;U_RH_dBµV = 10+(S-5)*6+plusz_dB;U_RH_volt = 1 mikro*exp10(U_RH_dBµV/20);;U_URH_dBµV = -10+(S-5)*6+plusz_dB;U_URH_volt = 1 mikro*exp10(U_URH_dBµV/20)</szamolo>

S érték Jelszint RH-n Jelszint URH-n
S1 -14 dBµV -34 dBµV
S2 -8 dBµV -28 dBµV
S3 -2 dBµV -22 dBµV
S4 4 dBµV -16 dBµV
S5 10 dBµV -10 dBµV
S6 16 dBµV -4 dBµV
S7 22 dBµV 2 dBµV
S8 28 dBµV 8 dBµV
S9 34 dBµV 14 dBµV
S9+20 dB 54 dBµV 34 dBµV
S9+40 dB 74 dBµV 54 dBµV
S9+60 dB 94 dBµV 74 dBµV

Alternatív meghatározás szerint rövidhullámon S9 = 50 μV, URH-n 5 μV, valamint S(n+1) = 2 * S(n). Eme két definíció értékei között kevesebb, mint egy százalék eltérés van. Továbbá dBm-ben kifejezve az S5-ös jelszint = -97 dBm RH-n és -117 dBm URH-n.

A fenti táblázat alapján látható, hogy az S értékek 6 dB-enként vannak felosztva, azaz két S fok között a jelfeszültség kétszeresére nő (ami által a teljesítmény a négyszeresére, ami pedig éppen a 6 dB). Látható továbbá hogy rövidhullámon az S5-ös jelszint 3 mikrovoltos bemenő jelet jelent. URH-n a kisebb zajszint miatt érzékenyebb vevők építhetők, így ezt az értéket az S mérő 20 dB-lel lejjebb, 0,3 mikrovoltnál mutatja.

Ez azt is jelenti, hogy amennyiben 6 dB-lel jobb nyereségű antennával forgalmazunk, az mindössze 1 S értéknyit javít a vételen. Azonban ne felejtsük el, amikor S1-et alig akarja elérni a jel, akkor az a 6 dB igen sokat számít.

Az előző szakasz példáján látszik, hogy 5 W kimenőteljesítmény 7 dBW, amennyiben 6 dB-nyi adóteljesítmény növelést szeretnénk, akkor az 13 dBW, azaz 10*2 = 20 W-tal kell adni.

Rádiófrekvenciás eszközök jelszintjei

Felhasználás Vételjellemzés Jelszint
Rádióamatőr RH S1 -14 dBµV (0,2 µV)
S5 10 dBµV (3 µV)
S9 34 dBµV (50 µV)
Rádióamatőr URH S1 -34 dBµV (0,02 µV)
S5 -10 dBµV (0,3 µV)
S9 14 dBµV (5 µV)
CCIR FM rádió Igen gyenge hang 20-26 dBµV (10-20 µV)
Hullámzó hang 34-40 dBµV (50-100 µV)
Stabil mono hang 40-46 dBµV (100-200 µV)
Jó minőségű, de monó hang 46-52 dBµV (200-400 µV)
Sztereo URH hang 54 dBµV (500 µV)
Analóg TV Szinkronjel nyomok 20-26 dBµV (10-20 µV)
Szinkronizált zajos kép 34-40 dBµV (50-100 µV)
Kontrasztos, stabil de zajos kép 40-46 dBµV (100-200 µV)
Zajmentes fekete-fehér
vagy zajos színes kép
46-52 dBµV (200-400 µV)
Zajmentes színes kép 54 dBµV (500 µV)

A hangfrekvenciás átjátszókábel esetén pedig a 0 dBm (0,775 V) a referencia feszültség. Eredete a vezetékes távbeszélőtechnikában alkalmazott 600 ohmon disszipálódó 1 mW teljesítményre vezetődik vissza.

neper

Neper ( John Napier of Merchiston ) egyrészt nem tízes, hanem természetes alapú logaritmust; másrészt nem teljesítmény-, hanem amplitúdó- ( feszültség ) arányt használt. A mértékegység neve neper, jele Np.

[math] A = \ln \frac{U_2}{U_1}\ [Np] [/math]

[math] A = \frac{1}{2} \cdot \ln \frac{P_2}{P_1}\ [Np] [/math]

bit

Logaritmikus értékek nem rádiótechnikai alkalmazásai

  • Richter skála - földrengések erőssége
  • magnitúdó - csillagok fényessége
  • pH - a víz 7-es pH értékű, alatta savas, felette lugos.

Külső hivatkozások