„Szerkesztővita:Gg630504” változatai közötti eltérés

Innen: HamWiki
Ugrás a navigációhoz Ugrás a kereséshez
a
a
4. sor: 4. sor:
 
* d<sub>b</sub>: tekercs belső átmérője
 
* d<sub>b</sub>: tekercs belső átmérője
 
* d<sub>k</sub>: tekercs külső átmérője
 
* d<sub>k</sub>: tekercs külső átmérője
* d<sub>a</sub>: tekercs átlagos átmérője = (d<sub>k</sub>+d<sub>b</sub>)/2
+
* d<sub>a</sub>: tekercs átlagos átmérője
* d<sub>v</sub>: tekercs vastagsága = (d<sub>k</sub>-d<sub>b</sub>)/2
+
** egyrétegű: d<sub>b</sub> + d<sub>h</sub>
 +
** többrétegű: (d<sub>k</sub>+d<sub>b</sub>) / 2
 +
* d<sub>v</sub>: tekercs vastagsága = (d<sub>k</sub>-d<sub>b</sub>) / 2
 
* l: tekercs hossza
 
* l: tekercs hossza
 
* N: menetszám
 
* N: menetszám
14. sor: 16. sor:
 
Molnár, Jovitza: Rádiósok könyve, 85. oldal ( reprint 1994. ).
 
Molnár, Jovitza: Rádiósok könyve, 85. oldal ( reprint 1994. ).
  
<math>L = \frac{N^2 \cdot d_b}{0,04 + 0,14 \cdot \frac{l}{d_b}}</math>
+
<math>L = \frac{N^2 \cdot d_a}{0,04 + 0,14 \cdot \frac{l}{d_a}}</math>
  
* d<sub>b</sub>: cm
+
* d<sub>a</sub>: cm
 
* l: cm
 
* l: cm
 
* L: cm ( == nH )
 
* L: cm ( == nH )
  
<szamolo sor=5 oszlop=70 szoveg="Nem SI mértékegységek!">d_b = 3;l = 5;N = 57;;L=negyzet(N)*d_b/(0.04+0.14*l/d_b)</szamolo>
+
<szamolo sor=5 oszlop=70 szoveg="Nem SI mértékegységek!">d_a = 3;l = 5;N = 57;;L=negyzet(N)*d_a/(0.04+0.14*l/d_a)</szamolo>
  
 
Átalakítva:
 
Átalakítva:
  
<math>L = \frac{N^2 \cdot d_b^2}{140 \cdot l + 40 \cdot d_b}</math>
+
<math>L = \frac{N^2 \cdot d_a^2}{140 \cdot l + 40 \cdot d_a}</math>
  
 
* L: μH
 
* L: μH
32. sor: 34. sor:
 
Rádióamatőrök kézikönyve 1978. 23. oldal.
 
Rádióamatőrök kézikönyve 1978. 23. oldal.
  
<math>L = \frac{N^2 \cdot d_b^2}{100 \cdot l + 45 \cdot d_b}</math>
+
<math>L = \frac{N^2 \cdot d_a^2}{100 \cdot l + 45 \cdot d_a}</math>
  
* d<sub>b</sub>: cm
+
* d<sub>a</sub>: cm
 
* l: cm
 
* l: cm
 
* L: μH
 
* L: μH
  
<szamolo sor=5 oszlop=70 szoveg="Nem SI mértékegységek!">d_b = 3;l = 5;N = 57;;L=negyzet(N)*negyzet(d_b)/(100*l+45*d_b)</szamolo>
+
<szamolo sor=5 oszlop=70 szoveg="Nem SI mértékegységek!">d_a = 3;l = 5;N = 57;;L=negyzet(N)*negyzet(d_a)/(100*l+45*d_a)</szamolo>
  
Megjegyzés: induktivitás a legnagyobb, ha D/l == 2.
+
Megjegyzés: induktivitás a legnagyobb, ha d<sub>a</sub>/l == 2.
  
 
== Egysoros légmagos tekercs 3. - Nagaoka ==
 
== Egysoros légmagos tekercs 3. - Nagaoka ==
46. sor: 48. sor:
 
HE 1993-03-101.
 
HE 1993-03-101.
  
<math>L = k \cdot N^2 \cdot d_b</math>
+
<math>L = k \cdot N^2 \cdot d_a</math>
  
Ha <math> 0,01 <= \frac{d_b}{l} <= 1</math>, akkor <math>k = 8,04 \cdot 10^{-3} \cdot (\frac{d_b}{l})^{0,912}</math>
+
Ha <math> 0,01 <= \frac{d_b}{l} <= 1</math>, akkor <math>k = 8,04 \cdot 10^{-3} \cdot (\frac{d_a}{l})^{0,912}</math>
  
Ha <math> 1 < \frac{d_b}{l} <= 100</math>, akkor <math>k = 8,19 \cdot 10^{-3} + 6,84 \cdot 10^{-3} \cdot ln(\frac{d_b}{l})</math>
+
Ha <math> 1 < \frac{d_a}{l} <= 100</math>, akkor <math>k = 8,19 \cdot 10^{-3} + 6,84 \cdot 10^{-3} \cdot ln(\frac{d_a}{l})</math>
  
* d<sub>b</sub>: cm
+
* d<sub>a</sub>: cm
 
* l: cm
 
* l: cm
 
* L: μH
 
* L: μH
  
<szamolo sor=8 oszlop=70 szoveg="Nem SI mértékegységek!">d_b = 3;l = 5;N = 57;;d_b_l=d_b/l;L0 = 0.00804*exp(0.912*ln(d_b/l))*negyzet(N)*d_b;L1=(0.00819+0.00684*ln(d_b/l))*negyzet(N)*d_b;</szamolo>
+
<szamolo sor=7 oszlop=70 szoveg="Nem SI mértékegységek!">d_a = 3;l = 5;N = 57;;d_a_l=d_a/l;L0 = 0.00804*exp(0.912*ln(d_a/l))*negyzet(N)*d_a;L1=(0.00819+0.00684*ln(d_a/l))*negyzet(N)*d_a;</szamolo>
  
 
== Többrétegű légmagos méhsejt tekercs 1. ==
 
== Többrétegű légmagos méhsejt tekercs 1. ==
  
 
HE 1993-03-101.
 
HE 1993-03-101.
 +
 +
Olyan, mint a Gergely-Czellár féle, de:
 +
* határozottan a tekercs külső átmérőjét említi, a számláló érdekes;
 +
* a nevezőben <math>0,38 \cdot (d_k+d_v)</math>-nál d<sub>h</sub> helyett d<sub>v</sub> van.
  
 
<math>L = \frac{(d_k+d_v)^2 \cdot N^2}{0,38 \cdot (d_k+d_v) + 1,5 \cdot l + 1,25 \cdot d_v} \cdot 10</math>
 
<math>L = \frac{(d_k+d_v)^2 \cdot N^2}{0,38 \cdot (d_k+d_v) + 1,5 \cdot l + 1,25 \cdot d_v} \cdot 10</math>
70. sor: 76. sor:
  
 
<szamolo sor=6 oszlop=70 szoveg="Nem SI mértékegységek!">d_k = 4;d_v=1;l = 3;N = 57;;L = negyzet(d_k+d_v)*negyzet(N)/(0.38*(d_k+d_v)+1.5*l+1.25*d_v)*10;</szamolo>
 
<szamolo sor=6 oszlop=70 szoveg="Nem SI mértékegységek!">d_k = 4;d_v=1;l = 3;N = 57;;L = negyzet(d_k+d_v)*negyzet(N)/(0.38*(d_k+d_v)+1.5*l+1.25*d_v)*10;</szamolo>
 
Átalakítva:
 
 
<math>L = \frac{N^2 \cdot (1,5 \cdot d_k - 0,5 \cdot d_b)^2}{1,5 \cdot l + 1,195 \cdot d_k - 0,815 \cdot d_b} \cdot 10</math>
 
 
  
 
== Többrétegű légmagos kereszttekercselésű tekercs 2. ==
 
== Többrétegű légmagos kereszttekercselésű tekercs 2. ==
  
 
Gergely Lajos, Czellár Sándor: Elektronikai alkatrészek és műszerek, 52. o. 3-4. képlet.
 
Gergely Lajos, Czellár Sándor: Elektronikai alkatrészek és műszerek, 52. o. 3-4. képlet.
 +
 +
'D - a tekercs átmérője', de, hogy belső, külső vagy átlagos, az homályban maradt. D<sub>b</sub>-nek vettem fel, mert a számlálóban így <math>d_b+d_v = d_a</math> lesz.
  
 
<math>L = \frac{(d_b+d_v)^2 \cdot N^2}{0,38 \cdot (d_b+d_h) + 1,5 \cdot l + 1,25 \cdot d_v} \cdot 0,01</math>
 
<math>L = \frac{(d_b+d_v)^2 \cdot N^2}{0,38 \cdot (d_b+d_h) + 1,5 \cdot l + 1,25 \cdot d_v} \cdot 0,01</math>

A lap 2010. július 15., 21:33-kori változata

Teszt. Nagyon teszt.

  • dh: huzal átmérője
  • db: tekercs belső átmérője
  • dk: tekercs külső átmérője
  • da: tekercs átlagos átmérője
    • egyrétegű: db + dh
    • többrétegű: (dk+db) / 2
  • dv: tekercs vastagsága = (dk-db) / 2
  • l: tekercs hossza
  • N: menetszám
  • L: induktivitás

Egysoros légmagos tekercs 1.

Molnár, Jovitza: Rádiósok könyve, 85. oldal ( reprint 1994. ).

[math]L = \frac{N^2 \cdot d_a}{0,04 + 0,14 \cdot \frac{l}{d_a}}[/math]

  • da: cm
  • l: cm
  • L: cm ( == nH )

<szamolo sor=5 oszlop=70 szoveg="Nem SI mértékegységek!">d_a = 3;l = 5;N = 57;;L=negyzet(N)*d_a/(0.04+0.14*l/d_a)</szamolo>

Átalakítva:

[math]L = \frac{N^2 \cdot d_a^2}{140 \cdot l + 40 \cdot d_a}[/math]

  • L: μH

Egysoros légmagos tekercs 2.

Rádióamatőrök kézikönyve 1978. 23. oldal.

[math]L = \frac{N^2 \cdot d_a^2}{100 \cdot l + 45 \cdot d_a}[/math]

  • da: cm
  • l: cm
  • L: μH

<szamolo sor=5 oszlop=70 szoveg="Nem SI mértékegységek!">d_a = 3;l = 5;N = 57;;L=negyzet(N)*negyzet(d_a)/(100*l+45*d_a)</szamolo>

Megjegyzés: induktivitás a legnagyobb, ha da/l == 2.

Egysoros légmagos tekercs 3. - Nagaoka

HE 1993-03-101.

[math]L = k \cdot N^2 \cdot d_a[/math]

Ha [math] 0,01 \lt = \frac{d_b}{l} \lt = 1[/math], akkor [math]k = 8,04 \cdot 10^{-3} \cdot (\frac{d_a}{l})^{0,912}[/math]

Ha [math] 1 \lt \frac{d_a}{l} \lt = 100[/math], akkor [math]k = 8,19 \cdot 10^{-3} + 6,84 \cdot 10^{-3} \cdot ln(\frac{d_a}{l})[/math]

  • da: cm
  • l: cm
  • L: μH

<szamolo sor=7 oszlop=70 szoveg="Nem SI mértékegységek!">d_a = 3;l = 5;N = 57;;d_a_l=d_a/l;L0 = 0.00804*exp(0.912*ln(d_a/l))*negyzet(N)*d_a;L1=(0.00819+0.00684*ln(d_a/l))*negyzet(N)*d_a;</szamolo>

Többrétegű légmagos méhsejt tekercs 1.

HE 1993-03-101.

Olyan, mint a Gergely-Czellár féle, de:

  • határozottan a tekercs külső átmérőjét említi, a számláló érdekes;
  • a nevezőben [math]0,38 \cdot (d_k+d_v)[/math]-nál dh helyett dv van.

[math]L = \frac{(d_k+d_v)^2 \cdot N^2}{0,38 \cdot (d_k+d_v) + 1,5 \cdot l + 1,25 \cdot d_v} \cdot 10[/math]

  • dk: cm
  • dv: cm
  • l: cm
  • L: μH

<szamolo sor=6 oszlop=70 szoveg="Nem SI mértékegységek!">d_k = 4;d_v=1;l = 3;N = 57;;L = negyzet(d_k+d_v)*negyzet(N)/(0.38*(d_k+d_v)+1.5*l+1.25*d_v)*10;</szamolo>

Többrétegű légmagos kereszttekercselésű tekercs 2.

Gergely Lajos, Czellár Sándor: Elektronikai alkatrészek és műszerek, 52. o. 3-4. képlet.

'D - a tekercs átmérője', de, hogy belső, külső vagy átlagos, az homályban maradt. Db-nek vettem fel, mert a számlálóban így [math]d_b+d_v = d_a[/math] lesz.

[math]L = \frac{(d_b+d_v)^2 \cdot N^2}{0,38 \cdot (d_b+d_h) + 1,5 \cdot l + 1,25 \cdot d_v} \cdot 0,01[/math]

  • db: cm
  • dv: cm
  • dh: cm
  • l: cm
  • L: μH

<szamolo sor=7 oszlop=70 szoveg="Nem SI mértékegységek!">d_b = 2;d_v=1;l = 3;d_h = 0.05;N = 57;;L = negyzet(d_b+d_v)*negyzet(N)/(0.38*(d_b+d_h)+1.5*l+1.25*d_v)*0.01;</szamolo>