„Kapcsolóüzemű tápegység” változatai közötti eltérés

Innen: HamWiki
Ugrás a navigációhoz Ugrás a kereséshez
(alap + kategória)
 
(induktivitás méretezése)
56. sor: 56. sor:
  
 
A kimenőfeszülség negatív lesz. Itt is elmodható, hogy amíg a tekercsben a folyamatos áramfolyás fennáll, addig a kimenőfeszültség a kitöltési tényezőtől függ csak, a terhelőáramtól az ohmos veszteségeket leszámítva nem. Ekkor <math>U_{ki} = - \frac{U_{be}}{1-k}</math>
 
A kimenőfeszülség negatív lesz. Itt is elmodható, hogy amíg a tekercsben a folyamatos áramfolyás fennáll, addig a kimenőfeszültség a kitöltési tényezőtől függ csak, a terhelőáramtól az ohmos veszteségeket leszámítva nem. Ekkor <math>U_{ki} = - \frac{U_{be}}{1-k}</math>
 +
 +
== Az induktivitás méretezéséről ==
 +
 +
Minél nagyobb az [[induktivitás]], annál kisebb az áramhullámosság ugyanazzal a kapcsolójellel. A nagy induktivitás kivitelezése ellen azonban több tényező szól:
 +
 +
* a vasmagra ha több menetet tekercselünk, akkor kisebb áram hatására fog telítésbe menni, így nagyobb vasmag kell.
 +
* a sokmenetes tekercsben a rézveszteség is jelentősebb lesz.
 +
* nagy induktivitás következménye a nagy és nehéz tekercs.
 +
 +
Ha pedig túl kicsi az induktivitás, akkor nagy lesz az áramhullámosság. Ez két dolgot von maga után:
 +
 +
* nagyobb kondenzátor kell, hogy ugyanakkora maradjon a kimenőfeszültség hullámossága,
 +
* ha nem szabályozott tápegységről ''(vagy közös szabályozóval rendelkező több kimenetes tápegységről)'' beszélünk, akkor a minimum áramterhelést nagyobbra kell venni, hogy a kimenőfeszültség a fogyasztó levételekor ne szaladjon meg.
  
 
[[Kategória: Konstruktőri ismeretek]]
 
[[Kategória: Konstruktőri ismeretek]]

A lap 2011. szeptember 25., 00:22-kori változata

Alapok

A hagyományos 50 Hz-es transzformátorral dolgozó tápegységek mellett egyre nagyobb teret hódítanak a kapcsolóüzemű tápegységek. Jellemzői:

  • 50 Hz helyett tipikusan 20 kHz és 100 kHz közötti frekvenciatartományban szaggatják az áramot.
  • a gyors szaggatás miatt a hagyományos 50 Hz-es transzformátorhoz képest sokkal kisebb induktivitás elegendő.
  • a szaggatás következtében egyenáramú forrásról is üzemeltethető a tápegység.
  • a szaggatás jellegének módosításával a kimenetre jutó töltés mennyisége szabályozható
  • a lineáris tápegységekkel ellentétben a szabályozás itt nem egy főáramkörbe tett soros változtatható ellenállásként viselkedő alkatrésszel valósul meg, ezáltal nincs melegedő alkatrész, jó lesz a hatásfoka.
  • egy komoly hátrányuk, hogy nagyfrekvenciás elektromos zajt termelnek, amely megfelelő mértékű elnyomásáról szűrők beépítésével kell gondoskodni.

Alapkapcsolások

Feszültségcsökkentő kapcsolás

Angolul buck converter illetve step-down converter a neve.

Feszültségcsökkentő alapkapcsolás
Működési elve dióhéjban
  • amikor a kapcsolóelemet bekapcsoljuk, az áramerősség [math]dI = \frac{U_{be}-U_{ki}}{L} \cdot t_{bekapcs}[/math] mértékben növekszik.
  • amikor a kapcsolóelemet kikapcsoljuk, az áramerősség [math]dI = \frac{U_{ki}}{L} \cdot t_{kikapcs}[/math] mértékben csökken.

Ha négyszögjeles vezérlésben gondolkozunk, a kitöltési tényező [math]k = \frac{t_{bekapcs}}{t_{bekapcs} + t_{kikapcs}}[/math]

Érdekességképp megemlítendő, hogy ha az így létrejövő áramhullámosság kisebb, mint a terhelőáram, akkor a tekercsben folyamatos folyik az áram. Ekkor elmondható, hogy Uki = Ube * kapcsolójel_kitöltési_tényezője. Azaz például ha 12 volt a bemenpfeszültség és 1/3 ideig van bekapcsolva a kapcsoló, 2/3 ideig kikapcsolva, akkor (a dióda nyitófeszültségét és ohmos veszteségeket nem számolva) 4 V lesz a kimenőfeszültség függetlenül a terhelőáram mértékétől.

Ha a tekercsben az áramhullámosság meghaladja a terhelőáramot és a tekercsben ezáltal a folyamatos áramfolyás megszakad, akkor elmodható, hogy minél kisebb a terhelőáram, annál jobban fogja közelíteni a kimenőfeszültég a bemenőfeszültség értékét. Ez ellen kétféle megoldással lehet védekezni:

  1. szabályozó elektronikával a kitöltési tényezőt csökkenteni,
  2. vagy egy beépített terhelőellenállással biztosítani a minimális terhelőáramot.

Ha a tekercsben a folyamatos áramfolyás fennáll, akkor [math]U_{ki} = U_{be} \cdot k[/math]

Feszültségnövelő kapcsolás

Angolul boost converter illetve step-up converter a neve.

Feszültségnövelő alapkapcsolás
Működési elve dióhéjban
  • amikor a kapcsolóelemet bekapcsoljuk, az áramerősség [math]dI = \frac{U_{be}}{L} \cdot t_{bekapcs}[/math] mértékben növekszik.
  • amikor a kapcsolóelemet kikapcsoljuk, az áramerősség [math]dI = \frac{U_{ki}-U_{be}}{L} \cdot t_{kikapcs}[/math] mértékben csökken.

Ha a tekercsben a folyamatos áramfolyás fennáll, akkor [math]U_{ki} = U_{be} \cdot \big(1 + \frac{1}{1-k}\big)[/math]

Invertáló kapcsolás

Angolul buck-boost converter a neve.

Invertáló alapkapcsolás
Működési elve dióhéjban
  • amikor a kapcsolóelemet bekapcsoljuk, az áramerősség [math]dI = \frac{U_{be}}{L} \cdot t_{bekapcs}[/math] mértékben növekszik.
  • amikor a kapcsolóelemet kikapcsoljuk, az áramerősség [math]dI = \frac{U_{ki}}{L} \cdot t_{kikapcs}[/math] mértékben csökken.

A kimenőfeszülség negatív lesz. Itt is elmodható, hogy amíg a tekercsben a folyamatos áramfolyás fennáll, addig a kimenőfeszültség a kitöltési tényezőtől függ csak, a terhelőáramtól az ohmos veszteségeket leszámítva nem. Ekkor [math]U_{ki} = - \frac{U_{be}}{1-k}[/math]

Az induktivitás méretezéséről

Minél nagyobb az induktivitás, annál kisebb az áramhullámosság ugyanazzal a kapcsolójellel. A nagy induktivitás kivitelezése ellen azonban több tényező szól:

  • a vasmagra ha több menetet tekercselünk, akkor kisebb áram hatására fog telítésbe menni, így nagyobb vasmag kell.
  • a sokmenetes tekercsben a rézveszteség is jelentősebb lesz.
  • nagy induktivitás következménye a nagy és nehéz tekercs.

Ha pedig túl kicsi az induktivitás, akkor nagy lesz az áramhullámosság. Ez két dolgot von maga után:

  • nagyobb kondenzátor kell, hogy ugyanakkora maradjon a kimenőfeszültség hullámossága,
  • ha nem szabályozott tápegységről (vagy közös szabályozóval rendelkező több kimenetes tápegységről) beszélünk, akkor a minimum áramterhelést nagyobbra kell venni, hogy a kimenőfeszültség a fogyasztó levételekor ne szaladjon meg.